
  Paper 107, CCG Annual Report 13, 2011 (© 2011) 

107-1 

A Comparative Study of Simulation Techniques with Multiple Point 

Statistics: The MPS Beauty Contest 

John G. Manchuk, Steven J. Lyster, Clayton V. Deutsch 

 

Multiple point statistical algorithms are growing in number and complexity with our desire to generate models of 

the subsurface that reflect the true geological complexities therein.  Deposition observed in such formations as the 

McMurray have been identified as fluvial and estuarine, among others, and the geological architecture cannot be 

reproduced using two point statistics.  This paper identifies three MPS algorithms that rely primarily on the 

statistics of training images and conditioning data to construct categorical models, as opposed to MPS algorithms 

that rely on other image classification techniques.  Algorithms are qualitatively assessed using two large three 

dimensional problems: fluvial and estuarine.  Some quantitative analysis regarding algorithm complexity and 

computational demand is provided as well.  Sequential indicator simulation is used as a base case for what is 

achievable with two point statistics.  Other methods include the single normal equation, a Gibbs sampler approach, 

and an iterative algorithm based on random perturbations.  The primary result of this work is to increase 

awareness of MPS algorithms, how they work, and make the algorithms available. 

1. Introduction 

One of the challenges in building geological models using traditional two-point statistics is obtaining results that 

capture non-linear phenomena.  For certain depositional environments, it is difficult to create a geologically 

realistic model based on the variogram.  Higher order statistics are required to build models that have more 

complex features.  For categorical models, multiple-point statistics (MPS) are used.  MPS were initially proposed by 

Deutsch (1992) and Guardiano and Srivastava (1993).  More than two points are used to describe geological 

patterns and reproduce them in categorical models. 

Several MPS simulation algorithms have been developed for generating categorical models.  They include 

simulated annealing (Deutsch, 1992); the single normal equation (SNE) approach (Guardiano and Srivastava, 1993; 

Strebelle, 2002); neural networks (Caers, 2001); a pattern recognition and simulation approach called FILTERSIM 

(Wu et al, 2008); and an algorithm called MPS-GS that uses a Gibbs sampling technique (Lyster, 2009).  They all 

require training images, which are analogue models of the depositional environment.  Training images are used to 

inform the MPS algorithms. 

The purpose of this work is to describe and evaluate several of the MPS algorithms.  One of the challenges 

of MPS modeling is checking the results.  This is often done qualitatively, that is, how good or realistic the models 

look.  Checking models quantitatively is difficult because it is usually not possible to assess MPS from the available 

data.  It may only be possible to check that statistics such as the proportion of each category and large scale trends 

are reproduced.  Quantitative checks of MPS must be done against the training image.  Two measures include the 

multiple point histogram (Boisvert et al, 2007) and the distribution of runs (Mood, 1940).  Models are evaluated in 

this work qualitatively.  Other comparisons are done for the algorithms and include ease of setup, execution time, 

and memory requirements. 

The contest portion of this work was setup as follows.  Training images and conditioning data from two 

different depositional environments were provided to the authors.  The target models that were sampled for 

generating conditioning data were withheld.   Each participant generated an MPS realization using a different 

algorithm and provided: 1 - the executable; 2 - source code; 3 - parameter file with chosen parameters, and; 4 – 

the resulting model.  Agreement to return all four components was required to be a participant.  All algorithms 

were re-compiled and executed on the same computer to ensure accuracy and fairness in computational 

comparisons.  All code and examples are provided as supplementary material. 

2. Problem Setting and Goals 

Training images and object based techniques to generate them have primarily targeted the petroleum industry.  

The depositional environments that are studied in this work are for reservoir modeling.  Two different depositional 

environments are used: 1 – fluvial (Figure 1) and; 2 – estuarine (Figure 2).   The fluvial deposit contains three 

geological objects including channels, levees, and crevasse splays that are deposited in a floodplain (Miall, 1996).  
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Such a deposit may be representative of North Sea reservoirs and some areas of the McMurray oil sands deposit.  

There are four facies to model, where each object represents a facies type.  Channel, levee, and crevasse splay 

facies are considered net or sand facies while floodplain is non-net or shale facies. 

The estuarine deposit is tide-dominated and contains channels and point bars that are embedded in 

cross-stratified sand.  Point bars are composed of mud clast breccias and inclined heterolithic strata (IHS) that are 

alternating sequences of sand and shale drapes.  This type of deposit architecture is characteristic of the middle 

McMurray formation (Ranger and Gingras, 2003).  There are five facies to model: channel fill CHF, breccia BR, point 

bar sand PBS, shale SH, and cross-stratified sand CSS.  Both the fluvial and estuarine training images are 256 by 256 

by 128 pixels covering a square area of 4,096 m and a thickness of 20.48 meters.  Each grid cell is 16 by 16 by 0.16 

m in size. 

The overall goal of this work is to describe MPS and evaluate its abilities as a tool for practitioners.  Goals 

encompassed by this are: to briefly describe the various algorithms that are available; provide resources for each 

including relevant references, source code and executable programs; and to demonstrate each algorithm and 

provide a qualitative evaluation of their performance.  For the demonstrations, all parameters and results are 

provided. 

3. Sample Data 

Two realizations of each type of depositional environment are generated with identical parameters.  One 

realization is used for extracting a set of conditioning data while the other is used as a training image.  Sampling is 

done using vertical wells on an 8 by 8 quasi-regular grid to simulate exploration or delineation sampling (Figure 3).  

To remove the effects of sampling for comparison of final results the target global proportions of each facies is 

provided (Table 1).  Each data set consists of 8,192 facies samples.  A cross section through each data set is shown 

in Figure 4 that coincides with AA’ from Figure 3. 

 

Table 1: Target global proportions of each facies. 

Environment Facies Name Facies Code Proportion Sill 

Fluvial Floodplain 0 0.43 0.245 

 Channel 1 0.44 0.246 

 Levee 3 0.10 0.090 

 Crevasse Splay 4 0.03 0.029 

Estuarine Cross Stratified Sand 0 0.20 0.160 

 Shale 1 0.05 0.048 

 Point Bar Sand 2 0.48 0.250 

 Breccia 3 0.05 0.048 

 Channel 4 0.22 0.172 

4. Base Case 

Sequential indicator simulation (SIS) (Deutsch and Journel, 1998) is used to provide a base case for comparison and 

for a qualitative evaluation example.  The BLOCKSIS program developed by Deutsch (2006) is used with variograms 

that are derived from the training image instead of from the sparse conditioning data.  Variograms are modeled in 

the �, �, and � directions (Figure 5).  The assumption of second order stationarity is not appropriate; however, we 

cannot derive local variograms from the training image and apply them to the data.  All of the details in the 

training image cannot be summarized by the variograms and this motivates the use of MPS. 

A qualitative evaluation of a realization is done by visualizing plan and cross sections of the model with 

those from the training image (Figure 6).  This is a subjective approach because everyone observes images 

differently; however, we can agree that little to no features of the training image are observed in the SIS 

realization.  Connectivity of channel and levee facies is poor.  Some qualities are preserved.  For example, the 

crevasse splay facies are thin in cross section and more symmetric and extensive aerially, as in the training image.  

The apparent channel thickness with some amalgamation of channels is similar in cross section because this 

information was entrained in the vertical variogram.  The same conclusion for the thickness of other facies can be 

drawn.  The global proportions are reproduced as is the nature of SIS.  Two advantages of this approach are the 
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execution time and memory requirements are both low.  A single realization took 4.2 minutes and utilized 301 MB 

of RAM. 

5. MPS Algorithms 

Algorithms described in this section include the single normal equation (SNE) approach, the Gibbs sampler 

approach (MPS-GS) developed by Lyster (2009), and the iterative approach developed by Deutsch (updated in this 

CCG report).  The SNE approach is the most intuitive approach for modeling with MPS.  When applied in a naive 

fashion, it is also the most straightforward to apply; however, implementing it in a computationally efficient way is 

more challenging than the other methods. 

SNESIM 

The SNE approach implements Bayes’ Law, Equation (1), which defines the probability of an event, �, occurring 

based on a pattern of other events, �, that have already occurred. 
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In the context of categorical geological modeling, � is the probability that a particular category exists at an 

unsampled location and � is a pattern of sampled categories near �.   �(�) is the probability that defines how 

common the pattern is in the domain of interest (Figure 7).  Computing the probability that each category exists at 

� is done using training images.  A training image is scanned for all occurrences of the pattern � and for each one, 

the category at � is recorded.  The number of times each category occurs at � divided by the number of times the 

pattern � is found in the training image is the probability of interest.  Refer to Strebelle (2000) for more detail.  

Incorporating these probabilities into a categorical modeling algorithm is described in the following for each 

location, 	, in a domain of interest: 

 

1. Search for nearby data that may be existing samples or previously simulated data at other locations.  The 

data found forms a pattern, �. 

2. Scan the training image for � and compute the probability that each category exists at 	. 

3. Convert the probabilities into a cumulative distribution function (CDF). 

4. Draw a category from the CDF and add it to the pool of previously simulated categories. 

In the naive implementation, the training image is scanned for every different pattern � encountered.  More 

computationally efficient implementations involve discrete templates (Figure 7) that restrict the size of patterns as 

well as search trees that store a compressed version of all the patterns that exist in a training image.  Instead of 

scanning the training image repeatedly, probabilities are extracted from the search tree (Strebelle, 2000 and 

2002).  Patterns may also be compressed using neural networks (Caers, 2001).  It is possible to introduce more 

advanced features in the SNE algorithms such as the ability to reproduce global proportions and local proportions 

from trend models and improved feature reproduction using multiple grids. 

MPS-GS 

The Gibbs sampler MPS simulation method is an iterative technique that uses multiple-point events to determine 

the conditional probability of a facies at a given location (Lyster and Deutsch, 2008; Lyster, 2009). A multiple-point 

event is a discrete set of 
 points distributed spatially within a template.  Limiting the size of each event (for 

example, 
 = 4) allows a larger MPS template to be used without increasing the order of the statistics, �, where 

 is the number of categories, to too high a value for inference from a training image.  The template must be 

segmented into � sub-templates, each having 
 points (Figure 8) and probabilities from each sub-template are 

combined using the normal equations as described by Lyster (2009). 

Training images are used to calculate the probability that each facies occurs at the central position in the 

template based on the multi-point histogram observed in each of the sub-templates.  These are described as multi-

point events (MPE).  Based on the segmented template in Figure 8 and assuming there are four categories, the 

total number of probabilities is �� = 7 ⋅ 256 = 1,792. 
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After scanning a training image and storing all probabilities, the following workflow is used by the MPS-GS 

algorithm: 

1. Generate an initial categorical realization. 

2. For each location, 	, in the model: 

i. Estimate the conditional probabilities of each category based on the MPE’s from the training 

image and initial realization. 

ii. Convert the probabilities into a CDF. 

iii. Draw a category from the CDF and update the initial realization. 

3. Check for convergence of the MPE statistics from the realization to the training image.  Repeat step 2 until 

convergence is reached. 

 

Unlike the SNE approach where a realization is generated on a grid from conditioning data, or no data in the 

unconditional case, the MPS-GS algorithm requires an initial realization that is updated with an iterative approach.  

The initial realization may be generated randomly; however, much better convergence rates are obtained if the 

initial image contains some of the desired features.  Methods such as SISIM or the SNE approach could be used to 

accomplish this.  Additional features to reproduce global proportions and local proportions from trends as well as 

user-defined templates and multiple gridding are possible with the MPS-GS algorithm as well. 

Simulated Annealing (different algorithm now) 

An iterative approach is adopted.  A random category from the local proportions is assigned at each location.  The 

conditioning data are fixed and never permitted to change.  The grid nodes are all visited in a random order 

spiraling away from the conditioning data to ensure that they are reproduced without a discontinuity.  Normally, 5 

to 15 loops through all grid nodes will ensure convergence of the final realization.  When a grid node is visited a 

number of steps are taken: (1) an alternative category is considered, (2) all objective functions are updated and 

combined into a change in the global objective function, (3) a change may be made to the current category if the 

objective function improves.  These random perturbations are remarkably effective at permitting convergence of 

an initially random realization toward one that satisfies all of the constraints. 

7. Results and Evaluation 

The three algorithms described in the previous section were used to generate a categorical realization for the 

fluvial case and for the estuarine case.  Tuning parameters used for each algorithm and case are described and 

qualitative discussions of the results are given.  Algorithms are also compared for ease of use, execution time, and 

computer memory demand.  A script that generates several plan views and cross sections whose location is chosen 

based on the target models is applied to all entries.  How well features from the training image are reproduced in 

the resulting views is checked.  Comments will be objective so that readers can draw their own conclusions.  For 

the fluvial model, plan views were chosen at � cell indexes 4, 44, and 112; cross sections in the �� plane were 

chosen at � cell indexes 44, 128, and 213; cross sections in the �� plane were chosen at � cell indexes 44, 128, and 

213 as well.  An example of the output is shown in Figure 6.  For the estuarine model, plan views were chosen at � 

cell indexes 24, 63 and 100.  Cross sections are the same as for the fluvial model. 

A summary of the quantitative results is provided in Table 2.  Tuning parameters include any that are used 

to change the appearance of results, such as the variogram, search ellipsoid, number of conditioning and 

previously simulated values to use, servosystem factors, and others.  It is used to give a concept of algorithm 

complexity from the user’s point of view.  Even though parameters such as the variogram consist of several 

components, they are counted as a single tuning parameter.  For reference, an algorithm having 10 parameters 

would be considered complex, but very flexible; whereas an algorithm with no parameters is basic, but inflexible. 

 

Table 2: Overview of algorithm performance. 

Algorithm Used Number of Tuning 

Parameters 

Memory 

Requirements (GB) 

Time/Realization + 

Overhead (min) 

BLOCKSIS 4 0.30 4.2 

SNESIM 2 6.62 8.5 

MPS-GS 7 1.46 5.5 + 152.9 
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SNESIM 

A version of SNESIM from Strebelle (2000) was used and a complete description of parameters can be found 

therein.  Parameters used for the fluvial and estuarine cases were as follows: servosystem parameter � = 0.5, 

search radii of 800 m in � and � and 5 m in � for the fluvial case, search radii of 500 m in � and � and 5 m in � for 

the estuarine case.  Parameters such as the search template, number of conditioning and previously simulated 

data to use, and number of multigrids are determined automatically by the algorithm.  Results for the fluvial case 

are shown in Figure 9.  Plan views are similar to the training image; however, there is more short range variability 

in the result and less connectivity of channel and levee facies.  Cross sections are very similar to the training image 

and show good reproduction of object geometry and organization.  Levees are generally adjacent to channels and 

crevasse splays form small aerially-isotropic clusters. 

Results for the estuarine case are shown in Figure 10.  Channels are quite disconnected, which is likely 

due to their size relative to surrounding point bar objects that tend to take precedence.  Breccia objects are similar 

to those in the training image as are the overall appearance of the cross sections.  Separate channel successions 

are apparent.  Shale drapes are reproduced well despite their low proportion and small size; however, their arc 

shape in plan view was not retained. 

The version of SNESIM used was straightforward to implement, with complex parameters chosen 

automatically by the algorithm; however, for expert use this does impose some limitation and one may find it 

difficult to obtain desirable results.  In this case, other expert versions are available.  Setting up the parameters and 

executing the algorithm to obtain results was relatively painless.  Some fine tuning of the search parameters was 

necessary to arrive at the best looking realization.  The algorithm is memory intensive, requiring 6.62 GB for these 

cases.  It took approximately 8.5 minutes to generate a realization. 

MPS-GS 

For a complete description of MPS-GS parameters, see Lyster (2009).  Parameters used for the fluvial and estuarine 

cases were as follows: five multi-grids; � = 12 sub-templates or MPE’s; 
 = 4 points per sub-template; 

servosystem parameter � = 1; connectivity correction factor � = 0.2.  For the fluvial case, the minimum multiple-

point frequency to consider from the training image was 10�� while for the estuarine case was 5 × 10��.  Results 

for the fluvial case are shown in Figure 11.  The overall architecture of the geological objects appears to be 

reproduced with good connectivity of channel and levee facies and smaller isotropic crevasse splays.  Thicknesses 

of these objects look similar to those in the training image.  The sectional views do not clearly show individual 

channels; however, some are visible in  ! section 213 with nice shaped levees at the channel fringes.  Facies 

associations appear correct, such as levees primarily occurring adjacent to channels.  There are some areas with 

artifacts near the conditioning data.  Cross sections indicate some strings of conditioning data that appear as noise; 

this is caused by objects of other facies forming near the data. The top center of "! layer 43 is a good example of 

this, where a high proportion of floodplain facies has encroached on an interval of levee facies in the data. 

Results for the estuarine model were less successful (Figure 12).  The extensive point bar sand facies is 

reproduced in the realization; however, the channel objects are not reproduced aerially and the narrow channel 

cross sections are observed only occasionally.  The shale facies does not have the draped effect that is present in 

the training image.  Although the breccia facies appear to form laterally extensive layers, their thickness is too 

extensive.  Individual geological successions are not reproduced clearly.  Global facies proportions were 

approximately reproduced, but as in the fluvial case the lower-frequency facies, shale and breccia, had a relatively 

higher mismatch proportional to their target frequencies.  There are some artifacts near conditioning data similar 

to the fluvial case.  Overall, the complexity of the geology makes this type of estuarine environment a poor 

candidate for modeling with MPS-GS. 

For ease of use, MPS-GS requires expert input judgement as there are many parameters to tune including 

number of multigrids to use, number of multi-point events to consider, points per event, minimum multi-point 

frequency, template design, stopping criteria, a servosystem parameter, and a connectivity correction factor 

(Lyster, 2009).  Memory requirements were 1.46 GB and execution time was 158.4 minutes: 152.9 to compute the 

multi-point statistics and 5.5 minutes for the realization.  Generating additional realizations does not require re-

computing the multi-point statistics.  An advantage of the MPS-GS approach is that an initial image can be 

specified.  For example, SNESIM could be used to generate an initial image, then MPS-GS could be used to adjust it 

and hopefully enhance the results. 
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Iterative Algorithm 

The parameters for this algorithm were quite straightforward and only one program is required.  Small models are 

constructed very quickly, but large models take significant CPU time.  The time required for the large 3-D model of 

this contest was about eight hours – too long for effective comparison.  Some refinements are being considered. 

8. Conclusions 

This paper has drawn attention to some of the MPS simulation algorithms that could be used for modern 

geostatistical simulation.  This will be updated with new algorithms and will provide the practitioner with a place to 

find relevant programs and test cases. 
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Figures 

 
Figure 1: Plan and cross section of fluvial deposition, which is also used as the training image.  A vertical exaggeration of 75 is 

used for the cross section. 

 
Figure 2: Plan and cross section of estuarine deposition, which is also used as the training image.  A vertical exaggeration of 

75 is used for the cross section. 
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Figure 3: Sample locations and location of cross sections in Figure 4. 

 
Figure 4: Cross section through # = $%&$ ( showing sample data for fluvial and estuarine environments. 

 



 

Figure 5: Experimental variograms from the fluvial training image.

Figure 6: Plan and cross sections from a fluvial SIS realization.

128, 213; YZ sections 43, 128, 243. 

 

Figure 7: Example pattern ) and probabilities for

template of grid cells commonly used to limit the pattern s
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: Experimental variograms from the fluvial training image. 

: Plan and cross sections from a fluvial SIS realization. From upper-left to lower-right: slice 4, 44, 112; XZ sections 

and probabilities for* using facies from the fluvial setting.  The same pattern is also shown in a 

template of grid cells commonly used to limit the pattern sizes explored in a training image. 

, CCG Annual Report 13, 2011 (© 2011) 

 

 
right: slice 4, 44, 112; XZ sections 43, 

 
using facies from the fluvial setting.  The same pattern is also shown in a 



 

Figure 8: A pattern template segmented into 

template is segmented. 

Figure 9: Fluvial SNESIM realization.  From upper

128, 243. 
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: A pattern template segmented into + = , sub-templates, each with - = ..  There is no limitation on how the 

ealization.  From upper-left to lower-right: slice 4, 44, 112; XZ sections 43, 128, 213; YZ sections 43, 

, CCG Annual Report 13, 2011 (© 2011) 

.  There is no limitation on how the 

 
right: slice 4, 44, 112; XZ sections 43, 128, 213; YZ sections 43, 



 

Figure 10: Estuarine SNESIM realization.  From upper

sections 43, 128, 243. 

Figure 11: Fluvial MPS-GS realization.  From upper

128, 243. 
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: Estuarine SNESIM realization.  From upper-left to lower-right: slice 24, 63, 100; XZ sections 43, 128, 

GS realization.  From upper-left to lower-right: slice 4, 44, 112; XZ sections 43, 128, 213; YZ sections 43, 

, CCG Annual Report 13, 2011 (© 2011) 

 
right: slice 24, 63, 100; XZ sections 43, 128, 213; YZ 

 
right: slice 4, 44, 112; XZ sections 43, 128, 213; YZ sections 43, 



 

Figure 12: Estuarine MPS-GS realization.  From upper

sections 43, 128, 243. 
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ealization.  From upper-left to lower-right: slice 24, 63, 100; XZ sections 43, 128, 213; YZ 
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right: slice 24, 63, 100; XZ sections 43, 128, 213; YZ 


