
Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-1

Advances in Non-Random Discrete Fracture Network Simulation

Eric B. Niven and Clayton V. Deutsch

DFNSIM is a FORTRAN code created for the purpose of simulating discrete fracture networks. This paper

reviews improvements made to DFNSIM over the past year. The most notable improvement to DFNSIM is

that it is able to honour a target number of fracture intersections as it is now included as a component in

the objective function. This article also reviews implementation of an anisotropic distance as an alternative

proxy for fracture spacing and compares it to the previously used perpendicular distance between nearby

fractures. There are advantages and disadvantages to both distance measures but the perpendicular

distance is preferred.

Introduction

As easily accessible oil reserves continue to decline, producers are turning towards more complex and

challenging reservoirs such as naturally fractured reservoirs (NFRs). A NFR is defined as “a reservoir in

which naturally occurring fractures either have, or are predicted to have, a significant effect on reservoir

fluid flow either in the form of increased reservoir permeability and/or reserves or increased permeability

anisotropy” (Nelson, 2001). Carbonate reservoirs in the middle east are commonly thought of as NFRs. In

order to optimize management of NFRs, detailed information on the behaviour, attributes and properties

of the fracture network must be known along with those of the rock matrix.

 A discrete fracture network (DFN) is usually created to model the fractures in a reservoir. Large

scale faults and some large scale fractures show up on seismic surveys and are explicitly specified in the

model. Small and medium scale fractures (those that do not show up on seismic surveys) are modelled

probabilistically. Most commercially available DFN computer codes use a Poisson or a non-homogeneous

Poisson process to generate fracture locations randomly (Cacas et al. 2001, Gauthier et al. 2002,

Hitchmough et al. 2007). These codes also simulate fracture orientation independent of location. This

process may lead to fractures from the same joint set that are unrealistically close together, unrealistically

far apart or that cross at very low angles (see Niven and Deutsch (2010b) for more discussion on this

matter).

 At the 2010 annual meeting for the Centre for Computational Geostatistics, Niven and Deutsch

(2010a, 2010b) introduced a new approach and algorithm for DFN simulation. DFNSIM works by

generating more fractures than are required and finding a subset that matches target distributions of

fracture length, intensity, intersections and local fracture spacing and orientation. The early version

of DFNSIM showed promise, however several areas for improvement were identified over the course of

the past year. Last year’s version of DFNSIM:

• could only draw from normal distributions;

o Some fracture attributes such as size are distributed lognormally while fracture

orientation is often distributed according to a Fisher distribution. It is also possible that

fracture attributes may not follow a parametric distribution.

• could not honour the number of fracture intersections seen in real data;

• was too slow, limiting the size of fracture networks that could be simulated;

• required the user to select objective function constants in a trial and error process;

o This could require many lengthy computation runs to achieve a good match between

input and target distributions of fracture attributes.

• finds nearby fractures using a “perpendicular distance” (described in more detail in Niven and

Deutsch (2010a and b)).

o The program requires the user to select a bandwidth and a perpendicular distance to

search. If these two parameters are chosen poorly the program may incorrectly identify

nearby fractures.

This article reviews some of the improvements made to DFNSIM over the past year aimed at addressing

the concerns listed above.

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-2

Drawing Values From Non-Normal Distributions

The latest version of DFNSIM adds the ability to draw fracture orientations from a Fisher distribution. The

Fisher distribution is analogous to the Normal Distribution on a sphere. It is parameterized by angles from

the z (upwards positive) and x (east) axes (φ and θ, respectively) as well as a dispersion constant, κ.

cossin
(,) ; 0 2

2 (1)

e
f

e

κ φ

κ

κ φ
φ θ θ π

π

′′
′ ′ ′= ≤ ≤

−
 (1)

 κ can be estimated from the following formula, which is valid if the number of fracture poles is

greater than 30.

f

f

N

N R
κ ≅

−
 (2)

|R| is the magnitude of the vector sum of the unit vectors for orientation.

 Figure 1 shows simulated pole vectors using a fisher distribution. Two examples are shown to

illustrate the effect of increasing the dispersion parameter. As the parameter, κ, increases, the cluster of

points gets smaller around the mean vector. Uniform dispersion across the sphere can be specified by κ =

0.

 Fracture length is often thought to be lognormally distributed (Belfield, 1998). Thus, the ability to

draw from the lognormal distribution is also implemented in the latest version of DFNSIM.

 In practice, few variables are perfectly modeled by parametric distributions. In these situations,

the ability to draw values directly from the input data distributions can be valuable. For that reason,

DFNSIM can handle non-parametric distributions from which to draw values from. The non-parametric

distribution is described with a cumulative distribution function specified in a file with GEO-EAS format

(see Figure 2).

Objective Function Changes

Niven and Deutsch (2010c) demonstrated that modelling some natural fracture networks with typical DFN

simulation algorithms (specifically where fracture orientation is drawn independently of fracture location)

generates too many fracture intersections. Earlier versions of DFNSIM could not honour the number of

fracture intersections seen in some natural fracture networks. Additionally, DFNSIM could not honour

the target fracture length distribution.

The latest version of DFNSIM adds objective function components for the number of fracture

intersections in the DFN and the fracture length distribution (Equation 3). DFNSIM optimizes by any or all

of the components of the objective function:

() ()

() ()

2 2

, , , ,

1 1

2
2

, , , ,

1

,

Obj. Fn.
sbins lbins

spacing input i activated i Length input i activated i

i i

abins

Inter Angle input i activated i Intersections input i activated i

i

Intensity input i act

C S S C L L

C A A C Inter Inter

C I I

= =

−
=

= − + −

+ − + −

+ −

∑ ∑

∑

()
2

,

1

ibins

ivated i

i=

∑

 (3)

Where:

•
,input i

S and
,activated i

S are the target (input) fracture spacing distribution and the fracture spacing

distribution of the activated DFN, respectively. sbins is the number of fracture spacing bins.

•
,input iL and

,activated iL are the target (input) fracture length distribution and the fracture length

distribution of the activated DFN, respectively. ibins is the number of fracture length bins.

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-3

•
,input i

A and
,activated i

A are the target (input) nearest fracture inter-angle distribution and the

nearest fracture inter-angle distribution of the activated DFN, respectively. abins is the number

of inter-angle bins.

•
,input iInter and

,activated iInter are the target number of fracture intersections and the actual

number of fracture intersections in the DFN, respectively.

•
,input i

I and
,activated i

I are the target (input) fracture intensity and the fracture intensity of the

activated DFN, respectively. ibins is the number of intensity bins.

•
spacing length inter-angle Intersections intensityC ,C ,C ,C ,C are coefficients which serve to make the

objective function unit-less in order to compare components with different original units.

Previously in DFNSIM, the C-coefficients were set by the user via trial and error. However,

finding the right coefficients can be difficult and may require more computation runs than are necessary.

The new version of DFNSIM automatically calculates the coefficients using a simple algorithm:

1. First an initial DFN is calculated.

2. Then, a base objective function is calculated based on the initial DFN and the target distributions.

 1 1 2 2 3 3 4 4 5 5base
O C O C O C O C O C O= + + + + (4)

Where Ci and Oi (i=1 – 5) refer to the constants and components of the objective shown in

Equation 3.

3. Visit a fracture randomly.

4. Change its activation. If the fracture is activated, deactivate it and vice versa.

5. Recalculate the objective function and compare it to the base objective function.

, , ,i change i base i jO O O= − (5)

6. Reject the change, regardless of whether it improved the objective function or not.

7. Go to 3, until N fractures are visited and changed.

8. Calculate the average objective function change.

 () , ,

1

1
N

i i base i j

j

dO O O
N

=

= −∑ (6)

9. Calculate objective function constants. Fi,scaling is a scaling factor which can be applied to each

constant to increase or decrease the importance of that component of the objective function

relative to the others.

 ,

1
i i scaling

i

c F
dO

= (7)

Calculating Fracture Intersections

As noted, the latest version of DFNSIM calculates and tracks fracture intersections. Intersections are

checked in a two-step process. First, two fractures are selected and the intersections of their bounding

boxes are checked (Figure 3). Checking the intersection of bounding boxes is extremely fast. If the

bounding boxes do not intersect, the program moves on to check other fractures. If the bounding boxes

do intersect, then a possible intersection between the actual fractures is checked. If the fracture

intersection is detected, it is saved in memory. Additionally, if both fractures are ‘activated’, the

intersection is also stored separately. This allows the program to keep a running total of intersections

between activated fractures.

Computation Speed Improvements

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-4

The previous version of DFNSIM re-calculated the distance to the nearest fracture (local fracture spacing)

each time a fracture was activated or deactivated. The newest version of DFNSIM implements ‘local

updating’ around activated and deactivated fractures. This is achieved by pre-calculating and storing

those distances in memory. When a fracture is activated, its distance to the nearest fracture is simply

added to the distribution of local fracture spacing and vice versa. This change by resulted in a reduction in

computation time by over a magnitude.

Calculating fracture intersections and using them as a component in the objective function

results in an increase in computation speed. However, the above-mentioned ‘local updating’ as well as

other coding improvements has resulted in significant speed improvements for DFNSIM. The current

version of DFNSIM is approximately two orders of magnitude faster than it was as presented at the 2010

Annual CCG Meeting. This means that DFNSIM is capable of simulating and optimizing a 10 million

fracture model in less than one day (depending on processor speed).

Calculating the Distance to the Nearest Fracture

Previous versions of DFNSIM have always used the perpendicular distance to the nearest neighbouring

fracture (See Figure 4) as a proxy for fracture spacing. A search strategy is implemented where the

superblock search is first used to identify nearby fractures. Then those fractures identified by the

superblock search are further screened by a bandwidth and perpendicular distance to search as shown in

Figure 5. The fractures that fall within the bandwidth and perpendicular distance to search are then

subjected to the perpendicular distance calculation as shown in Figure 4. The DFNSIM algorithm requires

the user to specify the bandwidth and perpendicular distance to search.

Using the perpendicular distance to identify nearby fractures works well. However, there are a

some drawbacks:

1. Finding enough nearby fractures near the corners of models is an issue if:

a. The user specifies the retention of a high number of nearby data (identified by the

superblock search) for the perpendicular distance calculation.

b. Either the bandwidth or perpendicular distance to search is too small.

2. There is a tradeoff between the number of fractures that can be identified and stored in memory

and the bandwidth that is chosen. i.e. problems will arise if the user wishes to retain more data

for the perpendicular distance calculation than can be identified within the bounds of the

bandwidth and perpendicular distance to search.

3. Because of points 1 and 2 (above) selecting an appropriate bandwidth and perpendicular

distance to search can sometimes be difficult.

Figure 6 illustrates the problem. The figure shows two DFNs. Fractures are shown in 2D as black lines with

centroid locations indicated. The red arrows go from one centroid to another indicating which fracture is

nearest to another fracture. The arrowhead represents the nearest fracture to the fracture at the tail of

the arrow. A wide bandwidth is used for the left side DFN. The problem is that very small perpendicular

distances are calculated for fracture centroids that are fairly far apart. Note that the arrows don’t indicate

perpendicular distance – only which fracture is closest to the other using a perpendicular distance. Clearly

using such a wide bandwidth does not result in a fair approximation of fracture spacing. In order to fix this

problem the bandwidth is reduced. In the right side of the figure, the bandwidth is approximately equal to

the average fracture length. Here the nearest fractures make much more sense when the notion of a

perpendicular distance is taken into account.

 Another problem with the perpendicular distance and bandwidth concept occurs near corners of

a model. If the bandwidth is too narrow, only a few nearby fractures may be identified. Thus, there is a

practical lower limit to the choice of bandwidth.

It was thought that using an anisotropic distance in place of the perpendicular distance might

alleviate some or all of the limitations mentioned above. In order to use the anisotropic distance, first the

fracture is discretized into four points at each corner of the fracture along with its centroid. One of the

five points is chosen on each of two fractures. A vector h is calculated between the two points. The vector

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-5

h is resolved into 3 components. One component is perpendicular to the fracture, one is in plane and

horizontal and one is in plane and vertical. This is illustrated in Figure 7.

Next, an anisotropic distance is calculated as an effective distance as follows:

2 2 2

horiz, in plane vert, in plane perpendicular

horiz, in plane vert, in plane perpendicular

anisotropic

h h h
h

a a a

= + +

 (8)

 Anisotropy constants, ahoriz, avert and aperpendicular, are specified by the user. This is immediately

identifiable as a disadvantage since there is little to guide the user in selecting an appropriate values for a.

 Figure 8 shows two examples of nearest fractures calculated using the anisotropic distance. In

the figure, the arrows proceed from one point on a fracture to the nearest point on another fracture as

defined by the effective anisotropic distance. In the example on the left ain plane is set to 1.0 and aperpendicular

is set to 10. The results appear reasonable and are actually similar to the perpendicular distance method

in that the nearest fractures identified are largely similar. The right side of the figure shows an example

where aperpendicular is increased to 50. In this case, the anisotropy ratio between perpendicular and in-plane

distance is too high. The result is a number of instances where the nearest fractures are much farther

away and are not reflective of what reasonable nearest fractures should be.

 Figure 9 shows the variation in the distribution of perpendicular distance calculated for various

bandwidths. As is shown in the figure, the range of variation is fairly small for perpendicular distances

between 70 and 140. Unfortunately it is difficult to directly compare anisotropic distances with different

values of aperpendicular since the constants strongly scale the resultant anisotropic distance. As a result, the

length of the arrows (Euclidean distance) is calculated and used to represent the anisotropic cases shown

in Figure 9. Figure 10 shows the variation in the distribution of the length of the nearest fracture arrows.

There is significant variation on the distributions with increasing anisotropy.

 The two figures (Figure 9 and 10) indicate that the distances to the nearest fractures are less

sensitive to the choice of bandwidth (when using perpendicular distance) than they are to the ratio

between aperpendicular and ain plane.

 The question of which distance calculation method is best as a proxy for fracture spacing is not

easy to answer. On one hand, the perpendicular distance is faster (marginally), has units and represents a

“real” distance and its results are less sensitive to the user’s parameter choice (bandwidth). On the other

hand, finding enough nearby fractures near the corners of the model can be problematic if the bandwidth

is too narrow.

 If the anisotropic distance is used as a proxy for fracture spacing, the aforementioned corner

effects can be avoided. The calculation is also more robust in that there is no danger of not finding

enough nearby fractures (since there is no trimming by bandwidth). However, the calculation is more

sensitive to the user’s parameter choice (anisotropy ratio).

 The first author prefers the perpendicular distance over the anisotropic distance since it is less

sensitive to the user’s parameter choice.

Conclusions

The current version of DFNSIM implements several code improvements resulting in a decrease in

computation time by around two orders of magnitude. Currently DFNSIM is able to simulate and

optimize a model with 10 million fractures in less than a day.

 An algorithm for automatically calculating objective function constants has been implanted. In

theory, this has the advantage of avoiding the trial-and-error manual tuning that previous versions of

DFNSIM required. However, preliminary trials has shown that final DFN matches to target distributions

are poorer. Scaling factors can be used to improve the match, however determining scaling factors is

largely subject to trial and error and the resulting optimized DFNs still don’t match the target as well as

the previously used manual tuning approach.

 An option to use an anisotropic distance was implemented in DFNSIM and compared to the

perpendicular distance method. Each method has advantages and disadvantages but since the anisotropic

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-6

distance is more sensitive to the user specified parameter (anisotropy ratio), the original perpendicular

distance is preferred.

References
Belfield, W.C. 1998. Incorporating spatial distribution into stochastic modelling of fractures: multifractals and levy-stable statistics.

Journal of Structural Geology, 20(4). 473-486.

Cacas, M.C., Daniel, J.M., and Letouzey, J. 2001. Nested geological modelling of naturally fractured reservoirs. Petroluem

Geoscience, 7(S): S43-S52.

Gauthier, B.D.M., Garcia, M., and Daniel, J.M. 2002. Integrated fractured reservoir characterization: a case study in a North Africa

field. SPE Reservoir Evaluation & Engineering. SPE 79105. 284-294.

Hitchmough, A.M., Riley, M.S., Herbert, A.W. and Tellam, J.H. 2007. Estimating the hydraulic properties of the fracture network in a

sandstone aquifer. Journal of Contaminant Hydrology. 93(1-4):38-57.

Niven, E.B. and Deutsch, C.V. 2010a. A new approach to DFN simulation. Paper 102, Report 12, Centre for Computational

Geostatistics, University of Alberta, Edmonton, Alberta.

Niven, E.B. and Deutsch, C.V. 2010b. DFNSIM: A new program for simulating discrete fracture networks. Paper 402, Report 12,

Centre for Computational Geostatistics, University of Alberta, Edmonton, Alberta.

Niven, E.B. and Deutsch, C.V. 2010c. On the Randomness of Natural Fractures. Paper 207, Report 12, Centre for Computational

Geostatistics, University of Alberta, Edmonton, Alberta.

Figure 1: Fracture poles simulated using the fisher distribution for two values of κ.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

C
D

F

Bin

Fracture Length

2

Bin

CDF

0 0

0.2 0

0.4 0.1

0.6 0.15

0.8 0.2

1 0.22

1.2 0.23

1.4 0.24

1.6 0.25

1.8 0.29

2 0.5

2.2 0.8

2.4 0.9

2.6 0.95

2.8 0.97

3 0.99

3.2 1

3.5 1

Figure 2: Non-parametric CDF (left) and associated GEO-EAS file format.

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-7

Figure 3: Checking to see if two fractures (represented by thick black lines) intersect. First the fracture

bounding boxes are checked for intersection. If the bounding boxes intersect, the fracture planes are

checked for a possible intersection.

Figure 4: Perpendicular distance to the nearest neighboring fracture calculation.

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-8

Figure 5: Perpendicular distance search strategy.

Figure 6: Nearest fractures calculated using a wide bandwidth (left) and nearest fractures calculated using

a narrow bandwidth (right).

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-9

Figure 7: Illustration of anisotropic distance.

Figure 8: Nearest fractures calculated using an anisotropic distance (ratio = 10 on left and ratio = 50 on

right).

Paper 108, CCG Annual Report 13, 2011 (© 2011)

 108-10

Figure 9: Variation in histograms of fracture spacing with increasing bandwidth.

Figure 10: Variation in fracture spacing with increasing anisotropy ratio.

