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A Close Look at Bivariate Gaussian Spatial Distributions 
 

S. H. Derakhshan and C. V. Deutsch 

 

The assumption of bivariate normal distribution is critical in many geostatistical applications such as simulation of a 

spatial variable. Direct and cross indicator variograms arise in many geostatistical applications such as indicator 

cokriging, truncated Gaussian simulation, sequential Indicator simulation and checking for bivariate Gaussianity. 

This paper addresses theoretical properties and derivation of direct and cross indicator variogram for a Gaussian 

random function.  

 
1. Introduction 

Many geostatistical simulation techniques including Sequential Gaussian Simulation assume that the 

stationary spatial continuous variable being simulated,	���� , follows a multivariate Gaussian spatial distribution. 

The direct and cross indicator variograms are calculated based on different Gaussian cut-offs on a 

multivariate Gaussian random function. These Gaussian cut-offs are the basis for the indicator variables. The 

definition of indicator variable builds a useful relation between the continuous variable ����	and the indicator 

variable	������. This definition helps to derive different spatial properties of the multivariate Gaussian random 

function. The indicator variable is defined as: 

	����� = �1,							��	���� ≤ ���0,							��	���													  

Where, � = 1,… , � is the index for indicator (category or facies) variable and ��  is its proportion.	��� = ������� 

is the univariate Gaussian value or cut-off. The function ��∙� is the univariate standard Gaussian cumulative 

distribution function (CDF): 

��	����� = !"�#����� ≤ ��� = �� = �$���% = & '��� ∙ (�)*�
�+ = 12- & .�)/0 ∙ (�)*�

�+  

���� is the multivariate Gaussian random function with zero mean, unit variance and covariance	12�3�. The 

bivariate distribution of ����and ��� + 3�	is fully characterized by the bivariate CDF, �5��,��6�3�: �5��,��6�3� = � 7	����� ∙ 	��6�� + 3�8 = !"�# 7���� ≤ ��� 	, ��� + 3� ≤ ���68
= & & '$����, ��� + 3�; 12�3�% ∙ (��� + 3� ∙ (����)*�

�+
)*�6

�+  

�5��,��6�3� is also referred to as non-centered cross indicator covariance. '$����, ��� + 3�; 12�3�% is the 

bivariate Gaussian probability density function (PDF): 

 

'$����, ��� + 3�; 12�3�% = 12-:1 − 120�3� ∙ .<� =−12 >�0��� − 212�3� ∙ ���� ∙ ��� + 3� + �0�� + 3�1 − 120�3� ?@ 

 

The centered cross indicator covariance is defined as: 

 A5��,��6�3� = A�B 7	����� ∙ 	��6�� + 3�8 = � 7C	����� − ��D ∙ E	��6�� + 3� − ��6F8 = �5��,��6�3� − �� ∙ ��6 
 

Following the first and second order stationary assumptions, the cross indicator variogram is defined as below: 

 

G5��,��6�3� = 12� 7C	����� − 	���� + 3�D ∙ E	��6��� − 	��6�� + 3�F8 = �5��,��6�H� − �5��,��6�3�
= A5��,��6�H� − A5��,��6�3� 

 

Where, �5��,��6�H�	and	A5��,��6�H� are calculated as below: 

 �5��,��6�H� = I����� , ��6� 
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A5��,��6�H� 
 I����� , ��6� ∙ J1 ; IK<��� , ��6�L G5��,��6�3�	can also be determined experimentally from actual spatial data, based on theoretical definition it can 

be concluded that: 

GM5��,��6�3� 
 12N�3� OC�����P� ; �����P 4 3�D ∙ E���6��P� ; ���6��P 4 3�FQ�3�
PR�

 

Capital 		corresponds to the indicator random variable while small �	correspond to indicator data. 

2. Properties of Cross Indicator Variogram of Gaussian Random Function 

The following properties hold for cross indicator variogram for Gaussian random function as a function of 

cut-offs: 

1. G5��,��6�3� is always theoretically positive that is G5��,��6�3� S 0. Assume that ���6 T ���. Based on the 

two cut-offs of ���and	���6 	, there are 9 regions in the 2 dimensional Cartesian plane. The 9 regions are 

numbered from 1 to 9. The cross indicator variogram is non-zero and positive in regions 3 and 7 while it is 

zero in other regions. Table 1 and Figure 1 show the non-negative property of direct and cross indicator 

variograms.  

Table 1 the signs of the direct and cross indicator variograms 

Region Tail; ���� Head; ��� 4 3� 	��6��� 	��6�� 4 3� 	��6��� 	��6�� 4 3� G5��,��6�3�
1 ���� T ���6 T ���  ��� 4 3� T ���6 T ���  0 0 0 0 0 

2 ���6 � ���� T ���  ��� 4 3� T ���6 T ���  1 0 0 0 0 

3 ���6 T ��� � ���� ��� 4 3� T ���6 T ���  1 0 1 0 + 

4 ���� T ���6 T ���  ���6 � ��� 4 3� T ���  0 1 0 0 0 

5 ���6 � ���� T ���  ���6 � ��� 4 3� T ���  1 1 0 0 0 

6 ���6 T ��� � ���� ���6 � ��� 4 3� T ���  1 1 1 0 0 

7 ���� T ���6 T ���  ���6 T ��� � ��� 4 3� 0 1 0 1 + 

8 ���6 � ���� T ���  ���6 T ��� � ��� 4 3� 1 1 0 1 0 

9 ���6 T ��� � ���� ���6 T ��� � ��� 4 3� 1 1 1 1 0 

 

 

Figure 1 the nine different regions based on the two Gaussian cut-offs 

2. G5��,��6�3� has the following symmetric properties: 
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G5��,��6�3� = G5��6 ,���3� = G5����,����6�3� = G5����6 ,�����3� 

3. G5��,��6�3� has no closed form analytical formula in general case. A single or double integral should be 

solved to get the values for 	G5��,��6�3�. There exist closed form analytical formula when �� = ��6 = �0: 

G5�0,�0�3� = 14 − V"WX��J12�3�L2-  

The double integration for G5��,��6�3�	can be reduced to a single integral analytically: 

G5��,��6�3� = I����� , ��6� − & & '$����, ��� + 3�; 12�3�% ∙ (��� + 3� ∙ (����)*�
�+

)*�6
�+= I����� , ��6� ∙ J1 − IK<��� , ��6�L

− 12- & .<� Y−���0 − 2������6X��Z + ���60
2A�[0Z \ ∙ (Z]^_`abJcd�3�L

e  

The integral has the simpler below forms if 	�� = ��6 ∶ 
G5��,���3� = �� ∙ �1 − ��� − 12-& .<� > −���01 + X��Z? ∙ (Z]^_`abJcd�3�L

e  

Or if	�� + ��6 = 1	: 
G5��,�����3� = JI����� , 1 − ���L0 − 12- & .<� > −���01 − X��Z? ∙ (Z]^_`abJcd�3�L

e  

Journel and Posa (1990) introduced an approximation for the direct indicator variogram (where the two 

cut-off are equal), i.e. G5��,���3�, with acceptable precision for a specific range of Gaussian cut-offs: 

 CG5��,���3�D∗ = V$���% ∙ �<�h�3� + i$���% ∙ �<�e.kh�3� 

Where 

lmm
n
mmo �<�h�3� = 1 − .�k3hV$���% + i$���% = �� ∙ �1 − ���V$���%i$���% = 5.26 + 0.123��� − 4.65���0 + 2.46���k − 0.37���t

−3.0 ≤ ��� ≤ +3.0
 

The maximum relative error for this approximation is less than 7 % when	3 ≥ 0.1K: 

uv = IK<3we.�h xG5��,���3� − CG5��,���3�D∗G5��,���3� x < 0.07 

 

4. The derivatives of G5��,��6�3� with respect to 3	is: yy3 EG5��,��6�3�F = (G2�3�(3 ∙ ' z��� , ���6 ; 12�3�{ 

Which implies that	 ||3 EG5��,��6�3�F	and	}~d�3�}3 	have the same sign since ' z��� , ���6 ; 12�3�{	is positive. This 

relation takes advantage the stationary assumption of 12�3� + G2�3� = 1	or 	}cd�3�}� + }~d�3�}� = 0. The 

derivatives with respect to other variable �� , ��6 	are as follows: 

yy�� EG5��,��6�3�F = �J�� , I����� , ��6�L − 1√2- ∙ � ����	,��6� 
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yy��6 EG5��,��6�3�F 
 �J��6 , I����� , ��6�L ; 1√2- ∙ � ����6	,��� 

Where �J∙,∙L	is Kronecker delta function and defined as below: 

�JK, #L 
 �1				��				K 
 #0				��				K � # 

���	,��6 	and	���6	,��	are auxiliary variables and defined as: 

���	,��6 
 ���6 ; 12�3� ∙ ���:1 ; 120�3�  

���6 ,��	 
 ��� ; 12�3� ∙ ���6:1 ; 120�3�  

5. It can be shown that G5��,��6�3�	has Gaussian (in terms of variogram shape) type behavior if �� � ��6 	and 

Exponential behavior if �� 
 ��6 	. The cross indicator variogram is hyper Gaussian (destruction effect) and 

has extraordinary low values when the Gaussian cut-offs (��� 	and ���6 ) are extreme low and high values. 

Figure 2 shows the cross indicator variogram for different probability cut-offs of 0.1, 0.5 and 0.9 from a 

spherical normal score variogram. 

 
Figure 2 the cross indicator variograms for different probability cut-offs of 0.1, 0.5 and 0.9 from   

 a single structure spherical normal score variogram 

The normalized variogram values (values divided by associated sills) are also plotted in two dimensional 

planes for the three dependent variable of probability cut-offs (� and	�) and the standardized lags, 
3h. 

Figure 3 shows these plots. The variograms values are calculated using the algorithm introduced in 

Derakhshan and Deutsch (2011).  
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Figure 3 direct and cross indicator variograms for different probability cut-offs of 0.1, 0.5 and 0.9 at standardized lag 

distances of 0.25,0.50 and 0.75 

6. All of the direct and cross indicator variograms have the same range as the original normal score 

variogram of Gaussian random field. The sill value for each of the indicator variograms is defined as 

below: 

A5��,��6�H� 
 I����� , ��6� ∙ J1 ; IK<��� , ��6�L 
7. The direct and cross indicator variograms and covariances must satisfy below general order relations 

(Journel and Posa, 1990) because of the behavior and properties of bivariate normal CDF that underlay 

them (for simplicity ��  is replaced by �	, and ��6 	is replaced by �): 

a. Property #1 entitle the following: 0 � G5�,��3� � I����, �� ∙ J1 ; IK<��, ��L � I����, �� � IK<��, �� 

Or 0 � G5�,��3� � I����, �� ∙ J1 ; IK<��, ��L � 1 ; IK<��, �� � 1 ; I����, �� 

b. The symmetric properties in #2 and integral definition in #3 entitle (for all �, �, 3): G5�,��3� 
 G5�,��3� 
 G5e,��3� 
 G5�,e�3� 
 0 

c. The bivariate normal CDF is non-decreasing (for all �, �, 3):: A5�,�6�3� ; A5�,�6�3� S ��� ; ��� � 0 

Specifically when � 
 ��	and � 
 ��; A5�,��3� ; A5�,��3� S �0 ; �0 � 0 G5�,��3� ; G5�,��3� S � ; � � 0 

d. For all  �, �, 3	such that � ; � � 0, the following inequality holds true: ;A5�,��3� 4 2A5�,��3� ; A5�,��3� � �� ; ��0 S 0 G5�,��3� ; 2G5�,��3� 4 G5�,��3� � � ; � S 0 

3. Direct and Cross Indicator Covariance Models of Coregionalizations: 

Machuka-Mory and Deutsch (2006) showed that Linear Models of Coregionalization (LMC) cannot be 

fitted to the direct and cross indicator variograms for a Gaussian random function field. This result is mostly 

because of both hyper-Gaussianity feature of cross indicator variogram (for two extreme low and high cut-offs) 

and exponentiality behavior of direct indicator variogram (in the case of equal cut-offs). This difference causes the 

un-fitness of LMC for direct and cross indicator variograms (see Figure 3). Basically LMC states that every 

variogram structure existing on a cross variogram must also exist in the corresponding direct variograms. For 

indicator case, the hyper-Gaussianity behavior of cross indicator variogram does not match with the exponentiality 

behavior of direct indicator variogram.  

The theoretical derivation and the bivariate integral formulation of direct and cross indicator variograms 

which were presented in this paper can be considered as Non-Linear (Analytical) Models of Coregionalizations 

(NLMC). The derived model cannot be fitted or modeled simultaneously with basic variogram models (i.e. 
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spherical, Gaussian, Exponential, etc.) simultaneously. The bivariate formulation satisfies the positive semi-

definiteness of covariance matrix; therefore this NLMC can be used directly in indicator co-kriging/co-simulation of 

continuous variables.  

 

Positive semi-definiteness of the full indicator covariance 

Characterization of the spatial relationship between the K indicator variables needs a matrix of stationary 

indicator covariance function,	A5��,��6�3�; �, �′ 
 1,… , �: 

A5�3� 
 �A5��,���3� ⋯ A5��,���3�⋮ ⋱ ⋮A5��,���3� ⋯ A5��,���3�����
			 , ∀3 

Theoretically in case of any isofactorial random functions (including Gaussian random function), A5�3� is a 

symmetric matrix, that is	A5��,��6�3� 
 A5��6 ,���3�. A5�3�	is positive semi-definite for any	h, the necessary and 

sufficient conditions for C��h�	to be positive semi-definite are, (1) the matrix of A5�3�	must be symmetric for any h, 

(2) The matrix of A5�3�	must have nonnegative eigenvalues for any h. Suro Perez (1995) considered that A5�3�	is 

positive definite. He benefited the positive definiteness of A5�3� to create the indicator principal component 

values and perform indicator principal component kriging (IPCK). The positive semi-definiteness is verified through 

an example. The steps to show this verification are as below: 

1. Consider 100 realizations of a Gaussian random function with an isotropic spherical covariance function: 

12�3� 
 1.0 ; 1.5 z 332.0{ 4 0.5 z 332.0{
k
 

For each realization; 

2. Generate 10 uniform random numbers between 0 and 1 (consider these 10 random numbers as 

probability cut-offs); �� , … , ��e 

3. For each lag distance 

I. Calculate the corresponding covariance value from 12�3� 

II. For each pair of cut-offs,	���� , ����; �, �� 
 1,… ,10�, calculate the direct and cross indicator 

covariance �A5�,���3�; �, �� 
 1,… ,10  

III. Calculate the eigenvalues of C��h� (see Numerical Reciepes) 

Results with 100 realizations show that all of the eigenvalues are positive definite. Figure 4 shows the histogram 

for each of the eigenvalues: 

 
Figure 4 verification of non-negetaiveness of eigenvalues of full indicator covariance function 
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Before using NLMC in estimation and/or simulation modes, the bivariate Gaussianity should be checked 

by comparing the experimental direct and cross indicator variograms with the theoretical derivation of	G5��,��6�3�	. 
As an example, a Gaussian random field is generated using a known single structure spherical variogram (with 

nugget effect of 5 % and range of 30 % of the field size), the experimental indicator variograms are calculated and 

are plotted against the theoretical ones from numerical integration.  

 
Figure 5 the check for bivariate Gaussianity for a random field 

Figure 5 shows the checks for bivariate Gaussianity, although the normal score variogram (bottom left) 

perfectly reproduces the input original variogram but there is no control on cross and indicator variograms. For 

generating a perfect Gaussian random field all of the univariate, bivariate,…, multivariate Gaussianity should be 

checked but it is not possible in reality.  

In order to assess uncertainty in both direct and cross indicator variograms at each lag using spatial 

bootstrap (Deutsch, 2004), a two dimensional Gaussian random field is generated with exponential single structure 

variogram (with nugget effect of 5 % and range of 12.5 % of the field size) as follows: 

1. Performing unconditional LU simulation to get Gaussian random field in a 64 x 64 field using an isotropic 

exponential variogram with one structure, 5% nugget effect and correlation range of 8.0 (one eighth of 

the field size). Figure 6 shows the spatial distribution, histogram and variogram reproductions. 

G2�3� 
 0.05 4 0.95.�k3�  

2. Adding coordinate to the unconditional LUSIM realization, it is necessary to perform Spatial Bootstrap 

3. Performing spatial bootstrap to resample data at data locations. Note that all of the simulated points in 

step 1 are used for resampling. 100 realizations are generated. 

4. Calculating experimental normal score variogram, direct and cross indicator variograms for different cut-

offs (e.g. 0.1, 0.5 and 0.9) for all of the realizations (see Figure 7). 

5. Checking the bivariate plots of the outlier points in matrix of indicator variograms,  

6. Table 2 summarizes the outlier point information based on the two extreme cut-offs of 0.1 and 0.9 (the 

one that is circled in each of the plots in Figure 7) along with exact theoretical values for variograms. The 

histograms for cross indicator variogram (with cut-offs of 0.9 and 0.5) values at each lag distance are 

shown in Figure 8. 
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Figure 6 spatial distribution, histogram and variogram reproductions of the synthetic Gaussian random field 

 
Figure 7 bivariate Gaussianity checks for a Gaussian random field using spatial bootstrap, the scatter plot in the left 

corresponds to the Head values versus Tail values for the outlier datum 

Table 2 outlier datum statistics in bivariate Gaussianity check using spatial bootstrap 

� � � Experimental GM Theoretical  

12.009 0.1 0.1 0.09482 0.08697 

12.009 0.5 0.1 0.05881 0.04926 

12.009 0.9 0.1 0.01191 0.00968 

12.009 0.5 0.5 0.24773 0.24833 

12.009 0.9 0.5 0.07683 0.04926 

12.009 0.9 0.9 0.14257 0.08967 

12.009 -- (normal score) -- (normal score) 1.30189 0.98948 
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Figure 8 histogram of cross indicator variograms at each lag using spatial bootstrap with cut-offs of 0.9 and 0.5 

4. Full Indicator CoKriging 

The indicator approach to conditional distribution modeling has applications in both continuous variables 

(evaluating the conditional cumulative distribution function (ccdf)) and categorical variables (estimating indicators 

at unsampled locations). Assume the same definition for indicator variable as presented in previous sections. The 

number of spatial hard data is	� and the index for that is	�. The general formulism for indicator approach to 

conditional distribution modeling is as below: �$�; ������% 
 !"�#$���� � ������% 
 ��	���������  

The formulism can be written as below in order to derive the indicator cokriging approach: � ��; ��� ���� 
 !"�#$���� � �������¡� 
 �P , � 
 1,… , �%
 � 7	������ 	����¡� 
 �����¡�, � 
 1,… , �; � 
 1,… , �8 ��� 	is one of the �cut-offs considered. Indicator kriging (IK) ignores the cross correlation between indicators at 

different cut-offs and location, this assumption in derivation of indicator kriging can be written as: � 7	������ 	����¡� 
 �����¡�, � 
 1,… , �; � 
 1,… , �8 
 � 7	������ 	�����¡� 
 ������¡�, � 
 1,… , �8 

It means that in order to estimate conditional distribution using indicator kriging, it is only needed to use the 

indicator data for the same cut-offs ��� .	In other words, the indicators for the same cut-offs ��� 	are more 

correlated with the indicator that is being estimated than the indicators for other cut-offs. Therefore the indicator 

kriging approach can be writing as: 

C�$�; ������%D5�∗ 
 O ¢P� ∙ �����P�b
PR�

 

With error variance of: 

�""�"	£K"�K�W. 
 � �EC�$�; ������%D5�∗ ; 	�����F0¤ 
 �� ; 2 O ¢P� ∙ CA5��,����P ; �� 4 ��0Db
PR�

4 O O ¢P� ∙ ¢P6� ∙ CA5��,����P ; �P6� 4 ��0Db
P6R�

b
PR�

 

 

The derivatives of error variance with respect to weights will give normal equations for IK. 

Therefore, the IK algorithm needs �	direct indicator variograms/covariances in order to calculate the kriging 

weights.  If the assumption of indicator kriging is ignored, then the Indicator cokriging (coIK) is derived: 

C�$�; ������%D_¥5�∗ 
 O O ¢P�,�6 ∙ ���6��P�b
PR�

�
�6R�
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Indicator approach is nonparametric that is the distribution ����	can have any form (Journel 1983). In order to 

calculate the indicator cokriging estimates, �0	direct and cross indicator variograms/covariances are needed. The 

error variance in coIK approach can be derived as: 

�""�"	£K"�K�W. 
 � �EC�$�; ������%D_¥5�∗ − 	�����F0¤ = �� − 2 O O ¢P�,�6 ∙ EA5��,��6��P − �� + �� ∙ ��6Fb
PR�

�
�6R�

+ O O O O ¢P�,�6 ∙ ¢P6�,�6 ∙ EA5��,��6��P − �P6� + �� ∙ ��6Fb
P6R�

b
PR�

�
�6R�

�
�R�

 

The same as IK, the derivatives of error variance with respect to weights will give normal equations for coIK. The 

size of the kriging matrix in IK is � × �, and this matrix is evaluated for each of the indicator cut-offs, while the size 

of the kriging matrix in coIK is �� × �� (considering both cut-offs and spatial locations in the covariance matrix), 

and this matrix is evaluated for each of the indicator cut-offs. Indicator cokriging is the best estimate for the 

conditional distribution which can be found in vector space of estimates generated by hard data (Journel and 

Alabert, 1989). The materials presented in previous section regarding the direct and cross indicator variograms can 

be applied here for indicator cokriging. 

 

5. Conclusion 

Direct and cross indicator variograms/covariances are discussed for Gaussian random function field, the 

unique properties for this family of covariance functions are presented. It is impossible to fit a Linear Model of 

Coregionalization (LMC) to the full covariance matrix of bivariate Gaussian indicators. The full covariance model 

presented can be treated as an Analytic or Non-Linear model of Coregionalization by itself, as the full covariance 

matrix is positive semi-definite, but the problem of using it in estimation or simulation modes is hyper Gaussianity 

(extraordinary continuity) of indicator variograms at extreme cut-offs. The experimental and theoretical direct and 

cross variograms are also compared to ensure the multi-Gaussian assumption. If the theoretical and experimental 

do not match well, then the Indicator approach is preferred than the Gaussian approach for simulation. The full 

indicator cokriging approach to conditional distribution is also presented with simplifications for indicator kriging. 

The presented full matrix of indicator covariance is used in indicator cokriging approach. 
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