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A Recall of Expected Ergodic Fluctuations in Gaussian Simulation 

Martha E. Villalba and Clayton V. Deutsch 

 

The simulation of standard normal values should reproduce the Gaussian distribution with mean zero and variance 

one; however, ergodic fluctuations cause these statistics to depart from their expected values. Statistical 

fluctuations are a part of the global uncertainty in the variable of interest. A non ergodic domain is the one where 

the range of correlation is large with respect to the domain size and where statistical fluctuations in the variance of 

the spatial average are expected. The research proposes to quantify the magnitude of expected statistical 

fluctuations by the use of analytical equation. These results are validated by the outcomes of non conditional 

realizations. A program LUSIM is modified to calculate the variance of spatial averages analytically. 

1. Introduction 

Geostatistical techniques for resource evaluation, such as Kriging and Simulation, require two assumptions. The 

first assumption of stationarity states that all multivariate distributions are invariant by translation over the study 

domain. Multivariate distributions are summarized by the mean vector and covariance matrix for all locations. The 

second assumption of ergodicity states that the spatial average (1) of a random stationary function (RF) Z(u) over a 

domain A converges to the expected value m=E{Z(u)} when A tends to infinity (2) (Chilès & Delfinier, 1999). 
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When the domain size tends to infinity, the variance of the spatial average is expected to be zero. In practice A is 

finite and the spatial average ZA will be variable when A is finite. Figure 1 shows the change of the spatial average 

variance as a function of the size of A. 

 

Figure 1: The variance of spatial average versus A. When this variance is greater than zero, the domain is called non ergodic. 

Simulation algorithms are based on the multivariate Gaussian RF model. This parametric model is the most widely 

used with extremely congenial properties (Goovaerts, 1997). The simulation of standard normal values should 

reproduce the Gaussian distribution with mean zero and variance one; however, ergodic fluctuations make the 

results different from zero and one. A study on acceptable ergodic fluctuations (Leuangthong, McLennan, & 

Deutsch, 2005) shows significant statistical fluctuations for three examples with variogram range of 20%, 50%, and 

100% of the domain. Even when the domain becomes relatively large compared to the range of correlation, these 

statistical fluctuations are considerable and are a part of the global uncertainty. The magnitude of the statistical 

fluctuations can be quantified by performing non conditional simulation. The expected fluctuations in the mean 

are derived below in presence of conditioning and verified by numerical examples. 

2. Expected Fluctuations in the Mean 

The variance of the spatial average in the domain A is a measure of the expected fluctuations. The domain could 

be discretized by N nodes, these are defined by the variable function Z(u
(i)

), where the location of each node is u
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= 1,…,N. The available data are defined by z(uk), where the location of each data value is uk  k = 1,...,n. These n 

available data values and N nodes define the domain A. Values at each node are estimated conditioned to the 

available n values. 

The covariance of the RF Z(u) should be constant over the domain, however. A non stationary covariance is 

observed in the presence of conditioning data. The covariance near the conditioning data is a function of the input 

“ergodic” covariance model and the location of conditioning data. Figure 2 shows a domain A that has z(uk), k = 

1,...,6 conditioning data. The discretization of the domain is with 100 nodes. As expected, the covariance between 

adjacent node location u
39

 and u
40

 will be different than the covariance between the node locations u
71 

and u
72

. 

This difference is
 
because C(u

71
,u

72
) has node locations that are near the conditioning data; C(u

39
,u

40
) has node 

locations that are far from the conditioning data. That is, the distance to the conditioning data matters in the 

evaluation of covariances. 

 

Figure 2: The covariance C(u
39

,u
40

) that is far from the conditioning data is different to the covariance C(u
71

,u
72

) that is near 

from the conditioning data. 

This non stationary covariance is correctly reproduced in sequential Gaussian simulation because the previous 

simulated nodes are used in the estimation of subsequent nodes (Neufeld, Ortiz, & Deutsch, 2005). These 

conditional covariances are required to compute the variance of the spatial average, which is given by: 
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The variance of the spatial average is expanded below. The first term is equivalent to the expected value of the 

conditional covariance between nodes plus the quadratic of the expected value of the spatial average, and the 

second term is the quadratic of the expected value of the spatial average.  
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The previous equation is simplified and the quadratic of the expected value of the spatial averages are canceled 

out. Where, Cov{Z(u
i
)Z(u

j
)} corresponds to the covariance between two random variables conditioned to the 

available data. 
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The conditional covariance requires the following steps: Define an n × n covariance matrix between available n 

data as C11. 
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Define the covariance matrix between n data and N locations of the discretized domain as C12. Also the notation 

Z(u) will be simplified in the expressions by just vector u. 
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Define the covariance matrix between N locations of the discretized domain in nodes as C22. 
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The expression for the conditional covariance matrix of N node locations given n conditioning values is given after 

combining covariances matrices C11, C12 and C22. The calculations of all the covariances use an input model 

covariance. 
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The kriging system is given in Equation (9). This term is observed in the conditional covariance equation. 
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The covariance matrix between the n data and the N nodes is transposed and multiplied by the kriging weights. 
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The previous matrix is substituted by the outcome of minimizing the kriging variance Equation (11). The covariance 

between random variables in the presence of conditioning data is deduced (12) (Neufeld, Ortiz, & Deutsch, 2005) 
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The simplified equation of the previous matrix is a function of the covariances between node locations, the set of 

weights and the covariances between conditioning data. Where no conditioning data are present, the covariances 

are identical to the input covariance model. 
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The equation of the conditional covariance between random variables is replaced in Equation (4) to obtain the 

conditional variance of the spatial average. 
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The variance of the spatial average is expanded. The two terms show their influence on the total Var{�̅A}. That 

equation accounts for the covariances of all the nodes that are inside the domain A. The non stationary covariance 

is reproduced in the presence of conditioning data. The first term is the average of the N × N 
 
covariances between 

nodes that belong to domain A, and the second term is the average of N × N nodes combinations of
 
redundancy 

measures of the available data regard to the nodes. 
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The expected value of the spatial average is represented by: 
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The previous two equations will be useful to evaluate non ergodic fluctuations. In an ideal ergodic domain the 

variance is zero because the mean of a realization of standard Gaussian distribution is zero, then, the variance of 

the means of many realizations should be zero. Equation (15) show statistics fluctuations, these statistical 

fluctuations are part of the uncertainty in the mean for the domain A. These variations depend of the relation size 

of the domain and the range of correlation. When the size of the domain becomes in the order of 10 times the 

range of correlation the fluctuations converge to zero. By the other hand, the uncertainty in the input parameters 

is an additional uncertainty that must be accounted for. 

3.  Application 

A simple scenario is used to show the influence of the conditioning data in the evaluation of the covariance. Three 

samples are located in an area of 150 meters × 150 meters. These samples are standard normal Gaussian. The 

variogram model is spherical and isotropic.  
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The area of study is discretized by nine nodes u
(i)

, i = 1,..,9. The covariance between node u
(2) 

and node u
(3) 

given 

three conditioning data uk, k = 1,...,3 requires the kriging weights for each node σk, k=1,…,3, the covariance 

between samples locations Ckk’ and the covariance between u
(2)

 and u
(3)

. For the node u
(2) 

 the kriging weights result 

-0.063, 0.109 and 0.508 and for the node u
(3)

 the kriging weights result -0.094, 0.208 and 0.192. As expected, the 

kriging weights are proportional to the distance between node and samples. Furthermore, the covariance matrix 

between the samples locations is as follow: 
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From Figure 3, the size of each node is 50 meters × 50 meters, then, the covariance C(u
(2)

 u
(3)

)  between adjacent 

evaluated nodes has the lag distance h equal to 50 meters. The covariance between u
(2)

 and u
(3)

 given three 

conditioning samples is solved in the next equation: 
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To verify the non stationary covariance in the presence of conditioning data, two other nodes with the same vector 

lag distance h are evaluated, namely the covariance between u
(4)

 and u
(5)

 that are near to the conditioning data. 
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Where, the kriging weights for the node u
(4)

 result 0.258, 0.004 and  0.457; for the node u
(5)

 result 0.141, 0.363 and 

0.387. Like the previous evaluation, the equation of the covariance conditioning to the data is as follow: 
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The data of the example are illustrated in Figure 3. The covariance C23 and C45 without conditioning nada are equal 

to 0.41 because the vector distances in both cases are the same; however, in the presence of conditioning nada, 

the conditional covariances over the domain become non stationary and depend on the distance to the 

conditioning data.  The conditional covariance C23|1,2,3 is farther from the condition data than the other 

conditioning covariance C45|1,2,3, then, the example shows that C23|1,2,3 is greater than C45|1,2,3 because the second 

term depend on kriging weights and is subtracted from the constant value 0.41 to get the conditional covariance of 

these nodes distant in 50 meters.  For instance, the nodes u
(4)

 and u
(5)

 obtain greater kriging weights than nodes 

u
(2)

 and u
(3)

 because they are located close to the conditioning data. As a result, the second term is 0.337 for nodes 

u
(4)

 and u
(5)

 greater than 0.138 for nodes 
 
u

(2)
 and u

(3)
. 

 

Figure 3: Graphic of the non stationary covariance in the presence of conditioning data. 

The example shows that conditional covariance C45|1,2,3 near the data results in 18 % of the covariance model. 

Otherwise, the conditional covariance C23|1,2,3  located a little far from the data results in 66 % of the covariance 

model (0.41). Those results are verified by simulating 1000 realizations; the C45|1,2,3 gives 0.081 and  C23|1,2,3 gives 

0.337. That is, the covariance given n conditioning data increases and becomes close to covariance model as the 

evaluated nodes are far from the conditioning data.  
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3.1. Verification of Analytical Variance of the Spatial Average 

The data and covariance model from the previous example is used to demonstrate the drop of the variance as the 

domain, A, increases. The next equation shows the variance of the spatial average of the domain that is discretized 

by nine nodes with three conditioning data. The first term corresponds to the covariance average between nodes 

equal to 0.3204, this value does not depend on the conditioning data; and the second term equal to 0.2022 

corresponds to the term that accounts the location of the conditioning data. The expected value of the spatial 

average 0.0964 accounts the values of the input data. 
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These values are shown in Table 1, where the parameters of the input covariance model are kept constant as the 

size of the domain A is increased from 150 meters to 1550 meters. The first term becomes smaller as the size of 

the domain increases because the covariances between distant nodes are less; the second term becomes smaller 

because the conditioning data are located farther from the nodes as the size of the domain increases. 

 

A(Xd×Yd) First term Second term Analytical Model 

150×150 0.3204 0.2022 0.1182

350×350 0.0802 0.0158 0.0644

550×550 0.0351 0.0026 0.0325

750×750 0.0195 0.0008 0.0187

950×950 0.0124 0.0003 0.0121

1150×1150 0.0086 0.0001 0.0085

1350×1350 0.0063 0.0001 0.0062

1550×1550 0.0048 0 0.0048

 

Table 1: Change of the variance of the spatial average with different size of domains. 

As expected, the variance becomes smaller as the size of the domain is increased, the variance approaches zero 

asymptotically, but it is practically zero when the ratio of the domain size and range of correlation is around 10. 

These analytical values are compared to the numerical model in Figure 4.  



  Paper 119, CCG Annual Report 13, 2011 (© 2011) 

119-7 

 

 

Figure 4: Synthetic data, non-ergodic variance of spatial average with different domain size. 

 

As expected, both analytical model and numerical show the decrease of the variance of the spatial average as the 

domain increases; however, slight differences are observed due to the limit number of samples. The ratio of the 

domain size and the range of correlation in the domain 150 × 150 is 1 and in the domain 350 × 350 is 2.3. Those 

ratios correspond to non ergodic domain because the ratios are less than 10. The numerical approach show slight 

variations of the variance of the spatial average. For instance 200 realizations of the domain 150 × 150 show 

variance 0.13 and 2000 realizations show variance 0.12. 

A second example is used to compare values of variance from 200 simulations (numerical) and analytical model. 

The “red” data contain 60 values of gold that are located in area of 500 meters × 600 meters. These values are 

transformed to normal Gaussian score and their anisotropic variogram is defined by: 

1 250
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The size of nodes is 50 meters × 50 meters, the domain size (Xd×Yd) 500 meters × 600 meters is increased eight 

times proportionally until the domain size reach (Xd×Yd) 2250 meters × 2700 meters. The largest domain is 

equivalent to 10 times the range of correlation. The previous example used synthetic data that contained 3 sample 

locations. Meanwhile, the current example shows a real scenario of 60 values. More samples and real scenario 

evaluate fairly the analytical model against the classical result of many simulations. 
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4. Figure 5: Variance of spatial average with different domain sizes for the Red data. 

The variance of the analytical model and numerical are similar, the slight difference is due to the numerical model 

being sensitive to the random generator of realizations. The decrease of expected fluctuations as the size of the 

domain increase is reproduced as the previous example. The examples validate the analytical model. 

5.  Conclusions 

The concept of ergodicity states that the spatial average of a random stationary function (RF) Z(u) over a domain A 

converges to the expected value m=E{Z(u)} when A tends to infinity. The expected value in normal score Gaussian 

is zero, then, the statistical fluctuations between realizations is projected equal to zero. 

Statistical fluctuations of realizations are reduced as the ratio between domain size and range of correlation 

increase. The examples show that fluctuations statistical practically reach zero at a ratio of 10. 

The analytical model is validated with numerical results of many realizations in two examples; it is observed that 

the results of analytical model are congruent with the statistical fluctuations of many simulations. 
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