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The Transfer of Uncertainty in the Mean through Simulation 
 

Martha E. Villalba and Clayton V. Deutsch 

 

A methodology is developed to transfer the uncertainty in the mean through simulation to obtain a more complete 

evaluation of uncertainty. The paper demonstrates the use of a simple methodology to account for parameter 

uncertainty. Multiple distributions are constructed and used in simulation as reference distributions. Original values 

are transformed into Gaussian units according to a specified reference distribution. The uncertainty in the mean of 

the univariate distribution is accounted for by changing the reference distribution for transformation. 

1. Introduction 

Geostatistical simulation is usually performed with a fixed input distribution; this fixed univariate distribution 

comes from the input data and assumes a mean without uncertainty. An important aspect of this thesis is that 

uncertainty in the mean of the input distribution (UMID) must be transferred through simulation for a more 

complete understanding of uncertainty. The techniques of conditional finite domain (CFD) and stochastic trend 

(ST) provide the UMID. Multiple distributions could be constructed and used in geostatistical simulation as 

reference distributions. 

Simulation is performed in Gaussian space because a consistent multivariate distribution is required and the 

multivariate Gaussian is the only known practical multivariate distribution. Original values are transformed into 

Gaussian units according to a specified reference distribution. The uncertainty in the mean of the univariate 

distribution is accounted by changing the reference distribution for transformation. A sequential Gaussian 

simulation (SGS) algorithm is adopted in this thesis; however, any Gaussian algorithm for simulation could be used. 

SGS is used because it is simple, flexible, and reasonably efficient (Deutsch, 2002).  

A change in local and global uncertainty is expected when UMID is transferred through the simulation process. A 

measure of local uncertainty is available at every location by generating a set of L realizations: 
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Local uncertainty could be used for planning and decision making; however, some applications require the 

uncertainty of more than one location simultaneously, a measure of the joint uncertainty about attribute values at 

several locations taken together. This spatial uncertainty is modeled by generating multiple realizations of the joint 

distribution of the attribute value (Goovaerts, 1997). Those realizations should reasonably reproduce the sample 

histogram and the semivariogram model. The set of simulated maps is generated by sampling the N-variate ccdf 

that models the joint uncertainty at the N locations u'j: 
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Spatial uncertainty is a result of our incomplete knowledge of the spatial distribution of the variable of interest.  

2. Methodology 

The probability distributions of continuous data are often summarized by a central value such as the mean 

(Deutsch, 2000). The mean of the distribution is a fixed parameter in the simulation process. Where there are n 

data values z(ui), i = 1,...,n with different weights w(ui), i = 1,...,n: 
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The uncertainty in the mean of the original distribution (σm) comes from one of the techniques such as the CFD or 

ST. The calculated fluctuations of the mean are summarized by distributions that have different mean values. The 

number of distributions or reference distributions in the simulation could be defined by L equally spaced quantiles: 
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The specific mean values corresponding to these quantiles are computed from a non standard Gaussian 

distribution computed to represent the UMID like standard deviation.  
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The correspondence sketch of a quantile and the respective mean is drawn in Figure 1. 

 

Figure 1: Sketch of the cumulative distribution function of distribution (mr , σm ), where σm  = Sm. 

Once the ml values are calculated, the relation of these values and the mean of the original distribution (mr) 

provide factors that are multiplied by each value of the original distribution. The factors (ml / mr) are ordered 

values because ml corresponds to each quantile in the cdf. Then, the variable distributions have values that have 

the lower mean when l = 1 and the biggest mean when l = L.  
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This factor is applied to strictly positive variables. Almost all data in the earth science are positive values including 

mineral grades, porosity and contaminant concentrations. The variance is not preserved in this transformation, but 

the most important statistic is the mean. The declustered weights of the variable distributions are the same as the 

original data because their spatial locations are the same.  

3. Implementation 

Simulation requires the original z-data to be transformed into y-values with a standard normal histogram, the 

normal score transform function can be derived through a graphical correspondence between the cumulative 

distribution of the original and standard normal variables (Goovaerts, 1997). The transformation process often 

uses the fixed ccdf of the original data; however, a different reference ccdf could be used. A simple way to transfer 

uncertainty in the mean through simulation is to use different reference distributions. An increase in global and 

local uncertainty is expected. A simple scenario explains the methodology, where a spherical semivariogram model 

is assumed, the distance between the �⌑ location to be simulated and the sample z(u1) corresponds to half of the 

range of the semivariogram (a/2). Since there is only one conditioning data, the conditional mean and variance is 

simplified to:  
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Two scenarios are evaluated; the first scenario considers a fixed global distribution. The simulation uses the 

parameters of the original fixed global distribution to standardize its datum of 2.5 original units into normal scores. 

Then, the conditional mean kriging (0.313) and conditional variance kriging (0.902) are predicted for the 

unsampled location. An independent residual that follows a normal distribution with mean of zero and the 

conditional variance is drawn with classical Monte Carlo simulation. The simulated value is the addition of the 

conditional mean kriging and the residual for that location (Deutsch, 2002). Figure 2 shows the result of this 

simulation, where the output distribution for the unsampled location is illustrated. 

The second scenario account for the simulation that uses a different reference distribution for the transformation 

of original values into normal scores and vice versa. The uncertainty in the mean of the input univariate 

distribution has a standard deviation of 0.2. The sampled location z(u1) will have different ccdfs to transform to 

normal scores; y(u1) in normal score unit takes values from 0.66 to 1.34. The product of those values and the 

weight kriging (0.313) gives different mean values and a constant variance kriging (0.902). Those values are 

sampled many times and back transformed into original units. The back transformation should use their respective 

transformation table matching the forward transform. Figure 3 shows the result of this simulation, where the 

output distribution for the �⌑unsampled location is wider than the previous simulation with fixed distribution. 

 

Figure 2: Sketch of simulation in one node using fixed ccdf (1,1.5
2
) like input parameter. 

 

Figure 3: Sketch of simulation at one node using variable ccdf to transfer uncertainty in the original distribution to simulation. 

The number of reference distributions is denoted with the letter L and the number of realizations of every 

reference distribution is denoted with the letter K. The resulting mean and variance: 
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As expected, the distribution of the output mean using uncertainty in the input parameter is wider than using a 

fixed input parameter. Uncertainty in the sampled location with fixed reference distribution is 1.41 and with 

variable reference distributions is 1.55. 
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4. Sensitivity Analysis 

One thousand simulations are performed with parameter uncertainty. Each simulation considers variable 

transforms into normal scores. One thousand quantiles are used to draw the residuals. The change of the 

correlation between the conditioning data and the unsampled location are evaluated. As expected, the results 

show that the uncertainty goes down when the correlation increases. Figure 4 shows the less increase in 

uncertainty as the spatial correlation increases. 

 

Data mean   1.00

Data STD   1.50

Uncertainty in mean of Input Distribution (STD.) 0.20

Conditioning value   1.00

Figure 4: Sensitivity analysis of the uncertainty with respect to the change of correlation, 1000 realizations are generated with 

fixed ccdf and with 100 variable ccdfs, the table shows the parameter used in the simulation where global mean and 

conditioning value are in original units. 

The simulation with variable ccdfs and zero range of correlation show uncertainty of the node equal to 1.512; the 

simulation with fixed mean gives an uncertainty of 1.499. Moreover the change of the conditioning sample value 

does not change the uncertainty when the simulation uses a fixed distribution. This is expected because, under a 

Gaussian model, errors are independent of the data values and dependent only on the data configuration 

(Goovaerts, 1997); however, a change of uncertainty in the node is observed when a lognormal distribution is 

used.  As expected, the uncertainty at the unsampled location increases as the uncertainty in the input parameter 

increases. Figure 5 shows the increase in uncertainty at the unsampled location as the input parameter uncertainty 

increases. 
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Data mean   1.00

Data STD   1.50

Conditioning value   1.00

Correlation    0.68

 

Figure 5: Sensitivity analysis of the uncertainty with respect to the change of UMID, 1000 realizations are generated with fixed 

cdf and with 100 variable cdfs, the table shows the parameters used in the simulation where global mean and conditioning 

value are in original units. 

The same scenario of one conditioning sample is expanded to a grid of five nodes in the east direction and five 

nodes in the north direction. The size of the nodes is one unit. The change of the local uncertainty and global 

uncertainty is evaluated for this scenario. The uncertainty in the mean of the univariate distribution is accounted 

for in the generation of 1000 variables means. The sequential Gaussian simulation approach is applied. The 

conditioning data is located in the center of the domain; an exponential variogram model is used with range of 

7.779 units because the covariance between the conditioning data and the closest node was set to 0.68. Figure 6 

shows the change of the distribution of the global means when uncertainty in the mean of the distribution is 

incorporated to the process of simulation. 

 

 

Figure 6: Spatial location of the conditioning sample z(u) in the domain, where the covariance z(u) to the nearest node is 0.688. 

The distribution of global means from SGSIM that use parameter uncertainty is compared with the one without parameter 

uncertainty. 

Twenty five nodes are evaluated in a 2D map. Just as in the case of one node, two scenarios are evaluated; both of 

them run with the same random number seed. The increase of global uncertainty (std.) is from 0.60 to 0.61. Also, 

the increase in uncertainty at all the nodes is observed when the distribution of the residuals is drawn with 

quantiles instead of random numbers. Conversely, the sampling of the residuals with random numbers shows two 

nodes with a very small reduction of local uncertainty. 

5. Practical Considerations 

Many techniques to evaluate uncertainty in the input parameters are available. All of them give reasonable output; 

however, it is important to keep in mind that some scenarios or phases of a project development require more 

parameters than other. Parameters like spatial correlation and finite domain must be taken account when the 

project has enough data to define the domain. 

The input distribution should be representative of the domain or volume to be evaluated. The limits in the tails of 

the distribution should be carefully defined. A wrong definition of the tails value could generate some artifact in 
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the transformation of the values into Gaussian units. The tail values may need to be chosen separately for each 

variable ccdf. 

The red data file is available in the CCG network and has 68 samples through a vein. There are samples of gold, 

silver, copper and zinc. The thickness of the samples is between 0.13 and 18.86 meters. The spatial distance 

between the samples is about 30 meters. The gold value is evaluated. A semivariogram model of the gold values in 

normal score units is required for the simulation-based approaches. 

( ) ( ) ( )1 100 1 250
2 90 2 95

0.44 0.56
ah ah
ah ah

Exp Expγ = =
= =

= +h h h  

Two structures were required to model the experimental variogram, which ah1 is the mayor range in the 15° 

azimuth and ah2 is the minor range in perpendicular direction to ah1. The evaluations are done on a domain of 

size 500 meters × 600 meters using a discretization of 5 meters × 5 meters blocks. The mean of the input 

distribution is 1.415 ppm with a standard deviation of 1.288. The uncertainty in the mean of the input distribution 

is the standard deviation of 0.360 using conditional finite domain.  

One hundred variable cdfs are created with a genrefdist.for program that was developed for this approach. One 

hundred sets of simulations are performed with their respective variable ccdf. Those ccdfs are used as reference 

ditribution in the program sgsim.for. The output files are gathered with a program mixsim.for. The same number of 

simulations is executed for the fixed ccdf. The two sets of simulations are compared and the increase in 

uncertainty is illustrated in a 2D map. The increase of the local uncertainty is visible in zones where the samples 

show high spatial variability. For instance, from the Figure 7 the samples that have 0.001 ppm the lower quantity 

of gold are neighbours with samples with thousand times more high values.  

 

 

Figure 7: Location of the red data and map of increase in local uncertainty because the uncertainty in the input parameter is 

transferred to the simulation. 

Besides those zones, the other zones that present a considerable increase in uncertainty is in zones that are 

located far from the conditioning data. 
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The local uncertainty at the nodes using a fixed reference distribution is compared to the one using different 

reference distributions by scatter graphic. Positive correlation is observed in Figure 8. 

 

Figure 8: Increase in uncertainty at each node after being simulated with different reference distributions. 

Every realization or map gives a unique mean that change through the realizations. The standard deviation of 

these means is defined as a global uncertainty. The global uncertainty with fixed ccdf is 0.12 and a narrow shape of 

the global means is given between 1.03 ppm and 1.64 ppm. The second scenario when the simulation take account 

the uncertainty in the mean of the input univariate distribution, the deviation of the global means increase to 0.24, 

that is, the tails of the distributions of the global means is expanded from 0.77 ppm to 2.30 ppm. Figure 9 shows 

the increase in uncertainty when is transferred the uncertainty of the input parameter to the simulation. 

 

Figure 9: Change of global uncertainty, fixed ccdf right histogram and variable ccdfs left histogram. 

The example shows that an increase in uncertainty is observed in local scale or zones close to the data and in long 

scale or zones that are far from the data. Also, the uncertainty at the locations of the data is zero with fixed and 

variable ccdf. The narrow uncertainty of the global mean is the optimal scenario provided that this uncertainty is 

accurate; however, uncertainty in the input parameter should not be ignored in the simulation process. 

6. Conclusions 

An important contribution of this paper is demonstrating how uncertainty in the mean of the input distribution is 

transferred through geostatistical simulation for a more complete understanding of uncertainty. Geostatistical 

simulation is usually performed with a fixed input distribution; this fixed univariate distribution comes from the 

input data and assumes a mean without uncertainty. 

 Multiple distributions could be constructed and used in geostatistical simulation as reference distributions. 

Original values are transformed into Gaussian units according to a specified reference distribution. The uncertainty 

in the mean of the univariate distribution is accounted by changing the reference distribution for transformation. 
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 Any Gaussian algorithm for simulation could be used. A change in local and global uncertainty is expected when 

the uncertainty is transferred through the simulation process. 
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