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Developments Toward Multiscale Modeling 
 

Talal Alahaidib and Clayton V. Deutsch 

 

Scale is an important issue in reservoir modeling. Often array of data are available for reservoir modeling. 

Eventually using all available data will reduce the level of uncertainty in reservoir models. But the thing is, data 

collected from a certain scale are not representative for any scale other than what they were collected at. Data 

scale must be taken into account when integrating them into numerical reservoir model. Integrating data from 

these wide ranges of scales into the reservoir model is a complex task. It is complex task because data measured at 

different scales reflect different degrees of heterogeneity and can have different degrees of accuracy. Also data 

from different scales tend to be of different variables, Therefore understanding how variables are correlated at 

different locations is important task in developing the theory of multi-scale modeling.  This paper presents in very 

general way the attempts to develop a methodology for multi-scale reservoir heterogeneity and uncertainty 

modeling. The goal is a reservoir model that reproduces the multi-scale data in a way that encounters no artifacts, 

no biases and handles numerical features of geological data such as nonlinearity and the proportional effect 

 

Introduction 

Predicting future reservoir performance is an important goal of reservoir flow models. Performance forecasting 

permits optimization of the economic recovery of the oil and gas resources. Reservoir simulation is an established 

approach to forecast the performance of a reservoir for a particular development strategy.  Data is expensive and 

sparse. Geostatistical models are used with the available data to build numerical models for reservoir simulation. 

Petroleum reservoirs are heterogeneous. Reservoir properties such as facies, porosity, permeability, faults, 

fractures and fluid saturations vary in space. The heterogeneity comes from variability in the depositional 

environment and subsequent events such as compaction, solution and cementation. An important goal of 

geostatistics is to build numerical models of heterogeneity that can be used in flow simulation. A central premise 

of geostatistics is to represent realistic spatial variability. Flow simulation is more reliable using geostatistical 

models that take into account heterogeneity. Historical geological models built using different techniques such as 

inverse distance led to less accurate flow forecasting. 

Scale is an important issue in reservoir modeling. The aim is to describe a reservoir volume of 10
5
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cubic meters of rock with few data. The data are gathered from different sources often at a much smaller scale. 

Accounting for the data scale is essential for accurate forecasting. For example, porosity values may be determined 

from cores or well logs that have significantly different scale than the grid blocks in flow simulation. The difference 

in scale should be accounted for when assigning properties to flow simulation grid blocks of an even larger scale. 

Table1 shows some of the available measurements at different scales. Geostatistical models can be produced at 

different scales. The resulting models should be consistent when upscaled or downscaled: however, they will not 

be if the models are constructed by conventional techniques. Figure1 illustrates the upscaling and downscaling 

concept.  The scale is in cubic metres.  There have been attempts to construct scale consistent models. Several 

methods for multi-scale modeling are available including conventional techniques such as cokriging, sequential 

gaussian simulation with block kriging and bayesian updating of point kriging. 

Direct simulation is a recent proposal. The direct simulation proposal is difficult to implement because of 

practical problems such as the proportional effect. High valued areas often show more variability than low valued 

areas. The proportional effect is a natural phenomenon; it is a fundamental fact that needs to be dealt with. The 

proportional effect can be seen on the variogram and in the prediction of local uncertainties. Relative variograms 

can be used to address the issue of the proportional effect on the variograms; however, there is no clear 

methodology on how to tackle the proportional effect issue in the prediction of local uncertainties. Transferring 

the data to Gaussian units mitigates the proportional effect issue, however, multi-scale data cannot be transferred 

directly to Gaussian units as data from different scale do not average linearly which can lead to biases and 

inconsistencies in the results. A common practice is to perform multi-scale modeling with direct simulation 

techniques, that is, using the data in their original units. This practice can handle the difference in scale, but the 

proportional effect issue still exists as direct simulation techniques assume that the variance is independent of the 

mean, while in reality the variance is indeed a function of the mean. A consequence of this assumption is that 

uncertainty in low valued areas is overestimated and uncertainty in high valued areas is underestimated. This 
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paper presents in very general way the attempts to develop a methodology for multi-scale reservoir heterogeneity 

and uncertainty modeling.  Understanding how variables are correlated at different locations is an important task 

in developing the theory of multi-scale modeling. determining the relation between different volumes at the same 

location with examples will be presented. 

 

Vision on how multi-scale modeling could proceed 

Assume that we have data from three different scales, seismic, well log and core samples, the probability density 

function (PDF) can be can be established. Figure 2 shows a hypothetical PDF sketch for three different types of 

data. The red PDF represent data collected from large scale (seismic), The yellow PDF represent data collected 

from a smaller scale (well log) and the blue PDF represent data collected from small scale (core smaples).   

The aim is to develop a methodology that can provide mapping of point variable Z to the Gaussian 

variable Y and vice-versa for different scales. Figure 3 shows a hypothetical sketch of the target chart.   Figure 4 

shows a flow chart of how developing a methodology for multi-scale reservoir heterogeneity and uncertainty 

modeling can be achieved. First a scale dependent transform methodology for data at different scales coming from 

variety of sources has to be devolved. Then a methodology to simultaneously process all the transformed data has 

to be developed. Co kriging and/or block kriging under multi-Gaussian model can be used to develop a 

methodology to simultaneously process all the transformed data. The output of this process is the prediction of a 

conditional mean and conditional variance at unsampled location. At this stage a conditional distribution at 

unsampled location can be generated in Gaussian units, it then can be back transformed to obtain a scale 

dependent conditional distribution in original units which has no artifacts, no biases and handles numerical 

features of geological data such as nonlinearity and the proportional effect. 

 

Relation between different volumes at same location 

Understanding the relation between different volumes is important. If the marginal distribution of two volumes is 

said to be Gaussian and the bivariate distribution is Gaussian then the relationship between them is fully captured 

by the correlation coefficient. The correlation coefficient can be theoretically calculated, we should be able to 

verify Theory numerically .  

 
Theory  

Knowing how two volumes at two different locations correlate with each other will enable us to predict the 

volume at the location of interest.  The Covariance equation can be written as follow: 

( ) ( ) ( ) ( ) ( ){ }C h E Z u u Z u h u hµ µ= − + − +        
Where  

C(h)= The Covariance 

Z(u)= Variable value at location u  ,  Z(u+h)= Variable at location  u+h 

µ(u)= Variable mean at location u , µ(u+h)=Variable mean at location  u+h 

In Geostatistics the Variogram is usually used instead of Covariance to measure the spatial dependence between 

variables.  The Variogram equation can be written as follow: 

( ) ( ) ( ){ }2

2 h E Z u Z u hγ = − +  
 

The above equation shows that there is no mean required for Variogram computations while it is needed for 

Covariance computations. For that reason in Geostatistics it is the preferred method to measure the spatial 

dependency between variables. 

To develop the theory of multi-scale modeling we choose to work under the Multivariate Gaussian frame work.  

The Multivariate Gaussian distribution equation can be written as follow: 
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( ) ( )
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where: 

µ is the 1Xn vector of mean values and ∑ is the nxn matrix of covariances.  
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The above equation shows that the multivariate Gaussian distribution is defined by the covariance not the 

variogram That’s why it is important to understand and compute the covariances of data at different scales.  
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where: Var{X}= point vriance=1, Var{Y}= Block variance, Xk= point value ( the one you decide to keep), Y= block 

value, and m=mean (equals to zero if standardization is assumed)  

Example ( From Theory) 

The aim of this example is to calculate the correlation between two volumes at the same location from theory and 

verify the results from practice.  Let’s consider a 2 x 2 block and calculate the covariance between the points and 

the block values using a spherical model with a nugget effect equal to 0.1 and a range of 32 

 

  The block value would be the average of the points values. 

1 4 

2 3 
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Example (from Practice) 

Given a domain size 512 by 512, block averaging 2 by 2, variogram model = Spherical with range equal to 32 and 

nugget effect equals to 0.1, Figures 5, 6,7 shows points distribution, 2x2 block averaging distribution and a points -

block scattered plot respectively.  The scattered plot illustrate a strong correlation between points and block 

values with correlation coefficient equal to 0.939 which is almost identical to the value obtained from theory, 

Figures 8,9 shows 3x3 block averaging distribution and its point-block scatter plot. 
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    Table 1. Measurements at different scales.  
Type Level Measurement Scale Measurements 

Micro Pore ~Millimetre 

Pore geometry 

Grain size 

Mineralogy 

Macro Core ~ Centimetre 

K,kr,Ø,Pc 

Wetability 

Saturation 

Mega Grid block ~Metre 
Logs 

Single well tracer 

Giga Interwell ~Kilometre 

Well test 

Surface seismic 

Interwell tracer test 

 

 
 

     Figure 1. Upscaling , downscaling concept. 
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Figure 2. Hypothetical distributions for data from different scales. 

 

Figure 3. Mapping of point variable Z to the Gaussian variable Y 
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Figure 4. flow chart of developing a methodology for multi-scale reservoir heterogeneity and uncertainty 

modeling. 
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Figure 5. Point scale distribution 

 

 

Figure 6. 2x2 block averaging distribution                            Figure 7. points-blocks scattered plot 

 

 

 
Figure 8. 3x3 block distribution                                               Figure 9. points-blocks scattered plot 


