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A Measure of Local Coherency Calculated from Wells for Data Checking 

and Geological Zonation 

John G. Manchuk and Clayton V. Deutsch 

A measure of coherency in facies between nearby wells is developed to aid in the processes of quality control of well 

data and geological zonation.  Coherency measures the agreement between a well and its immediate neighbors 

based on structural markers and facies interpretations.  The calculation can be done incrementally on sets of wells 

to identify incoherencies caused by errors in interpretation, measurement differences, data acquisition problems or 

actual changes caused by geological differences.  Attributes may include the year a well was interpreted or included 

in a database, the interpreter, or what logging tool was used.  Coherency is also used as a similarity metric in a 

hierarchical clustering algorithm for geological zonation.  Results are applied in several examples that demonstrate 

the use of coherency and clustering to quality control and clustering data into geologically similar objects. 

1. Introduction 

Quality control of well data can be a time-consuming process in reservoir characterization and geomodeling 

studies (Theys, 1999; Deutsch, 2002).  Data may be collected over many years prior to production.  During this 

time, technologies for data acquisition change and multiple geologists and well log analysts handle the data, 

undoubtedly with some variation in the subjective process of interpretation.  Two particular types of data that are 

prone to inconsistencies are structural markers and lithology indicators / facies due to the potentially subjective 

nature of these data types (Hein et al, 2002).  When variations, inconsistencies or incoherencies can be detected 

during a quality control study, the database may require attention to improve the resulting geological models and 

engineering studies. 

Variations in a database may be subtle and go unrecognized, especially when the database contains 

hundreds of wells and spans more than a decade of data acquisition.  Such a scenario is typical of large oilsands 

mining projects, mature fields heading into enhanced recovery stages of production and of in-situ production of 

heavy oil.  Subtle incoherencies may be perceived as inconsequential; however, they may have a significant impact 

on parameters for geomodeling, such as the variogram and local accuracy of prediction.  In this work, a measure of 

coherency is defined to help detect wells that are inconsistent within a database.  Coherency is calculated between 

a well and its immediate neighbors based on several parameters including the spatial position of wells, the facies 

interpretations along the wells, and the similarity between facies.  The calculation is fast and automatic making it 

possible to detect incoherency in very large databases. 

Resulting coherency measures for each well depend on the space considered.  There are often two spaces 

in geomodeling including physical space where the wells exist in present time and modeling space where the 

effects of time on the depositional environment have been accounted for.  Modeling space may also be referred to 

as stratigraphic space or geo-chronologic space (Deutsch, 2002; Mallet, 2004).  Variogram modeling and estimation 

using kriging is done in modeling space.  The spatial correlation of properties is higher in modeling space; 

therefore, so is the coherency.  Another use of the coherency measure is to assess the quality of the 

transformation from physical space to modeling space.  No improvement in coherency should raise some concern.  

To help assess how good an improvement is made, the coherency can be maximized by adjusting the vertical 

position of wells in a database.  In cases where maximization does not change the coherency, the modeling space 

is optimal in reference to the coherency measure.  In cases where large changes in coherency are observed, it may 

be necessary to re-evaluate the transformation process from physical to modeling space.  A large change may also 

indicate a well bust. 

Incoherencies in a database are not necessarily due to variations in interpretation or differences in 

technology.  Rather, they may be a product of the depositional environment.  For example, a middle estuarine 

environment with sinuous channels, inclined heterolithic strata (IHS), breccias, and other complexities may appear 

highly incoherent due to the heterogeneity in facies (McPhee and Ranger, 1998).  In this case, the measure of 

coherency has a secondary use, that is, to aid in the identification of geological zones based on the facies 

designations.  Facies intervals along wells are clustered with nearby wells into geological objects, where the 

coherency is used as a similarity metric.  Such geological zonation is important for delineating regions that are 
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stationary for geostatistical modeling. The clustering process can also be utilized for quality control, detecting 

boundaries between different geological successions, and trend modeling. 

2. Methodology 

2.1. Coherency 

The measure of coherency between two vertical or quasi-vertical wells was derived based on Equation 1 for the 

covariance function, where � is a random variable, � is a vector separating two points ��  and �� + �, �(�) is the 

number of pairs separated by �, and 	
 and 	� are the expected value of � defined by Equations 2 and 3. 
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The covariance function measures how two sets of data separated by � relate, or how coherent they are.  

Considering � as a Gaussian random variable with unit variance, a covariance of zero indicates no coherency 

whereas a covariance of 1 indicates full coherency.  The covariance between two vertical wells, denoted well � and 

well �, separated by � in an aerial plane is evaluated with Equation 1 by considering all ��  along well � and all 

�� + � along well �.  If the two wells are at the same depth, sample the same depth interval, and �(��) =
�(�� + �)∀�, the covariance or coherency is 1.  However, not all pairs between the wells have the same � when 

the depth coordinate is considered because only those pairs that exist in the same aerial plane are separated by �. 

The covariance measure in Equation 1 does not allow for any flexibility due to differences in depth 

between two wells and � must be permitted to vary within some limits.  A search window is introduced to allow 

some variation in � to account for minor stratigraphic variation between pairs of wells (Figure 1).  Search 

parameters include a search angle, �, and maximum search radius, �.  For each point ��  along well �, a set �� ∈ ��  
along well � are found within the search constraints such that �� − �� ≥ �, ∀�� ∈ ��.  Even though some variation 

in depth is accounted for this way, pairs that exceed � are penalized.  For wells � and � that have identical � 

values, the coherency should be zero if their depths differ by an amount greater than � so that problems related to 

well busts or transformations from physical to stratigraphic space can be identified.  A weight function defined by 

Equation 4 is introduced, where ���  is the dip angle between ��  and ��  and �/� is a scaling factor so that � = 0 

when � = �. 

 ( ) ( ), cos /i j ijλ πα θ=u u  (4) 

Because the search parameters yield a set of points along well � for each point along well �, only the pair with 

maximum weighted coherency is retained.  Otherwise, the weight function could lead to a reduced (averaged 

down) coherency measure when actual coherent intervals between the wells are smaller than the search radius.  

The final equation for coherency between wells � and � is given by equation 5, where � is the number of samples 

along wells � and � and �’s have been dropped for clarity. 
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Equation 5 involves the computation from well � to well � and � to � so that the coherency function is symmetric.  

Unlike the covariance equation where �(��)�(�� = �� + �) = �(��)�(�� − �), the max function is non-symmetric, 

that is, max ����! ∀" ∈ �� = max ����! ∀� ∈ ��  does not necessarily hold.  The parameter, #(�� , ��), is a similarity 

metric that replaces the product, �(��)�(�� + �) in Equation 1 and measures the similarity between two values.  

For continuous variables, # is defined by Equation 6, where � should be transformed to the [0,1] interval so that 

the coherency measure ranges from 0 to 1.  Alternatively, the covariance function of the random variable � could 

be used. 
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For categorical variables, # is a symmetric user-defined matrix with entries that define the similarity between 

different categories and ranges from 0 to 1.  For example, if # is an identity matrix, categories are completely 

dissimilar.  Categories that are somewhat similar can be given a similarity value greater than zero.  This may be the 

case for multiple facies that are found in the same geological feature such as a point bar, or for multiple rock types 

with considerable overlap between the underlying rock property distributions.  An example of a similarity matrix 

from an estuarine depositional environment with 5 facies is provided in Table 1.  Breccia and channel fill are 

assigned a similarity of 0.5 as breccia tends to deposit in the base of channels.  Point bar sand and shale are also 

deposited in the same geological object. 

 

Table 1: Example similarity matrix for an estuarine depositional environment. 

Facies Cross stratified sands Breccia Point bar sand Point bar shale Channel fill 

Cross stratified sands 1 0 0 0 0 

Breccia  1 0 0 0.5 

Point bar sand   1 0.5 0 

Point bar shale    1 0 

Channel fill     1 

 

Computing the coherency of a well, �, with $ of its immediate neighbors, �% , & = 1,… , $, is the average coherency 

between � and each �%  defined by Equation 7, where )%  are weights that can be computed in a variety of ways 

such as equal or inverse distance. 
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If all wells are approximately equally spaced, then equal weights may be used.  When significant variation in well 

spacing exists, then wells further away should have less impact on the coherency calculation than nearby wells and 

a weighting scheme such as inverse distance is more appropriate. 

 Equation 7 provides a quantitative assessment of the agreement between a well and its local 

neighborhood.  A high coherency indicates wells have a similar arrangement of facies or other reservoir properties.  

Low coherency may indicate a few different issues or characteristics of the data including: wells that have poor 

agreement between reservoir properties; wells that have a significant depth offset such as well busts; and 

reservoir properties that have a correlation length less than the well spacing.  The last result is a characteristic of 

the data and would likely result in low coherency measures for all wells in a database. 

2.2 Maximizing Coherency 

Determining the maximum coherency is an optimization problem.  A gradient descent algorithm is developed that 

changes the vertical position of wells until the average coherency of all wells is maximized.  The gradient is 

approximated for each well pair by evaluating the coherency at two points: the coherency after shifting the well 

some distance, ∆�, in the negative � direction and again in the positive � direction (Equation 8), where � is the 

vertical coordinate. 
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Since shifting well � down is equivalent to shifting well �%  up, the relation 9 holds. 
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The total gradient for well � is then computed using Equation 10, for all wells �+  that have � as an immediate 

neighbor. 
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Vertical positions of wells are updated by taking a step in the gradient direction by Equation 11, where , is the 

iteration, ��  is the top of a well, � is the step size, and � is the number of wells. 
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A line search algorithm called the golden section search is used to determine the step size that maximizes the 

coherency for the given gradient.  As wells are adjusted, the gradient changes since different facies intervals align 

at different angles.  The algorithm is as follows: 

 

I. Compute initial coherency. 

II. While α > 0 and ‖01�
2/0�‖ > 3 

1. Approximate the gradient using Equation 8 and 10. 

2. Find � to maximize the coherency using a line search. 

3. Update � using Equation 11. 

 

Because the step size is computed to maximize the average coherency of all wells together, it does not guarantee 

that the coherency of each well will increase.  This implementation of gradient descent is also not a global 

optimization algorithm, that is, it will likely converge to a local maximum.  Assuming the data and transformation 

from physical to modeling space is primarily of good quality, a local maximum is likely close to the global maximum 

and optimized well positions will provide an equal amount of information about data quality and space. 

 The optimization procedure is intended to provide information about the data including quality of facies 

and of accuracy or correctness of well positions in the depth coordinate.  It may be used to check the goodness of 

a transformation from physical space to modeling space.  For example, a large increase in coherency for a well in 

modeling space may warrant updating the transformation as long as such a change is geologically realistic or 

correct.  A large increase in coherency may also indicate a well bust or problematic formation marker elevation.  

Optimized well positions should not be used blindly to define the modeling space. 

2.3 Coherency-based Clustering 

The coherency measure defined by Equation 5 and 7 has other uses beyond identifying data quality issues.  It can 

be used as a similarity metric for clustering data into geological objects or zones with similar properties.  

Developments made towards geological zonation involve categorical data, such as facies or rock type.  For 

clustering, Equation 5 is used since it provides the similarity between two wells as opposed to a well with its 

surroundings as in Equation 7.  The latter does not provide useful information to determine if wells belong to the 

same geological zone.  A simple example with four wells and three facies demonstrates the concept of zonation 

and the different information provided from Equation 5 and 7 (Figure 2).  Coherency between well pairs is used to 

detect where changes in zone occur; however, this poses problems when the coherency is greater than zero 

(Figure 2). 

Coherency must be computed between smaller intervals along the wells to more accurately determine 

where geological zone boundaries exist.  The smallest possible intervals to consider are individual sample points 

and the coherency is defined by Equation 8, where ��  and ��  are from different wells, � and �, that are immediate 

neighbors. 
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The number of pairs depends on the number of samples, �, and number of nearest neighbors, $, to consider and 

is equal to 4 = � ∙ $.  Evaluating Equation 8 for all pairs yields a sparse symmetric 4 × 4 matrix, 7.  For small 

databases, this may not be an issue; however, the matrix can become substantial for databases with many wells 

having a small sampling interval.  Developing the clustering algorithm in this fashion is an area of future study.  To 

maintain a smaller matrix and accurately detect zone boundaries, wells are broken into intervals that have the 

same facies or rock types.  In Figure 2, each well would be separated into three intervals and the number of 

coherency values increases from 3 to 9.  Boundaries between well � and 1 in the upper and middle interval are 

detected since the coherency is zero and no boundary is assigned in the bottom interval since the coherency is 1. 

 In actual well databases, the zonation problem is three dimensional with much more variation in well 

elevations, geometry of nearest neighbor sets, facies, and geological architecture.  This results in a variety of 
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coherencies and adds complexity beyond that shown in Figure 2.  A hierarchical clustering algorithm (Theodoridis 

and Koutroumbas, 2009) is used to process the sparse coherency matrix into a set of possible geological zones or 

objects and proceeds as follows: 

 

I. Initialize set of clusters, 8� , � = 1, … , 4, that refer to facies intervals. 

II. While max97: > ; 

1. Find � and " such that 1�� = max	97: 
2. Merge cluster 8�  with cluster 8�, saving the result in 8�  

3. Update all entries in 1%+ , & = 1,… , 4, & ≠ �, where > = � or > = " 
4. Zero all entries 1�+ > 0 in 7. 

 

In this algorithm, ; is a coherency cutoff that defines when clustering is halted.  Because 7 is sparse, setting ; = 0 

will not necessarily lead to one cluster as in typical hierarchical algorithms.  The max	97: operation finds the entry 

in 7 with maximum coherency.  The merging operation in step 2 stores all items (facies intervals) contained in 8�  

within 8�.  The update operation in step 3 finds all entries in 7 that have a positive coherency with the items in the 

new cluster 8�.  If for a particular cluster &, both entries 1%�  and 1%�  exist, the coherency with 8�  is computed using 

one of the linkage types for hierarchical clustering: average linkage that takes (1%� + 1%�)/2; single linkage that 

takes max	91%� , 1%�:; and complete linkage that takes min	91%� , 1%�:.  Hierarchical clustering is often referred to 

using a dissimilarity measure where single linkage takes the minimum dissimilarity and complete linkage takes the 

maximum. 

 Several pieces of information are collected as clustering progresses including: the final cluster identifier; 

initial cluster identifier; and the coherency involved in merging an item with a cluster.  Final cluster identifiers are 

assigned to every sample present in the database for visualization and further processing.  Initial cluster identifiers 

are assigned to items in the order they are first merged together.  As items are merged with existing clusters, they 

are assigned the initial cluster identifier of that cluster; however, when two clusters are merged, there is no 

change in the initial cluster identifier.  This provides information about the growth patterns of the clustering 

process.  Lastly, the coherency involved in tying an item to a cluster is recorded and can be used as a measure of 

the probability that that item belongs to the cluster. 

4. Examples 

The coherency measure, maximization, and clustering are demonstrated using a set of vertical wells that sample 

three different types of media: 1 – uniform random facies; 2 – an estuarine training image; 3 – a fluvial training 

image.  The first data set is used as a control to observe coherency values that indicate poor data.  Data sets 2 and 

3 are used to assess the expected coherency of fluvial and estuarine deposition under ideal conditions.  For 

maximization, the estuarine data set is used with a few wells shifted to simulate well busts or post-depositional 

deformation.  Coherency clustering is applied to the fluvial data set. 

Coherency 

Data sets for demonstrating the coherency calculation are shown in Figure 3 with facies designations defined in 

Table 2 for the estuarine and fluvial examples.  Facies for the random example are not associated with any 

particular geology.  Data sets each consist of 256 wells that sample different grids with dimensions provided in 

Table 3.  Coherency was computed using the three nearest neighbors to each well (Figure 4).  Differences in the 

scale of geological variation between the estuarine and fluvial data are observed through the local variation in 

coherency, with more local variation for the estuarine data.  Because there is no stratigraphic deviation among the 

wells, the search parameters were set to � = 0.01 degrees and � = 1 meters.  Facies similarity matrices were set 

to identity matrices for the random and fluvial data.  The estuarine data involved a facies similarity matrix with 

ones on the diagonal and a one between the point bar facies because they exist in the same geological object.  

Histograms of the resulting coherency indicate low coherencies with little variation for the random data, and 

moderate values with an average of 0.6 for estuarine and fluvial data (Figure 5).  Coherency from the estuarine 

data had a variance substantially higher than the fluvial data.  This is likely due to differences in channel 

wavelength, width, and sinuosity. 

  



  Paper 126, CCG Annual Report 13, 2011 (© 2011) 

126-6 

Table 2: Facies for estuarine and fluvial examples. 

Estuarine Facies Fluvial Facies 

CSS – cross stratified sand FP – flood plain 

PBSH – point bar shale CH – channel sand 

PBS – point bar sand LV – levee 

BR – breccia CS – crevasse splay 

CH – channel fill  

 

Table 3: Grid sizes for example data sets. 

Data Set Nx, Ny Nz Dx, Dy Dz 

Random 200 100 25 0.1 

Estuarine 140 80 25 0.25 

Fluvial 256 128 16 0.16 

 

To understand the meaning of resulting coherency, wells with low and high coherency are plotted with their three 

nearest neighbors for the estuarine data set (Figure 6).  Conclusions are similar for the fluvial data set.  For the low 

coherency well, it samples CSS from the upper channel succession and point bar from the lower succession.  

Nearby wells sample channel fill from the upper succession and CSS from the lower (wells 118 and 121), and point 

bar from the upper succession and channel from the lower in well 143.  Because the wells are sampling different 

geological objects from the two successions, the coherency is low.  For the high coherency case, all wells sample 

the same point bar object from the upper succession and CSS from the lower succession. 

Low coherency results may be used to identify potential data quality issues.  They encourage those 

involved with the data to visualize the data and determine the cause of the low result.  In this case, the cause is 

due to the complex geology and is not a data quality issue.  Results may be useful for determining the type of 

geology in the local neighborhood of the well.  The interpretation of the coherency values is also important for 

coherency based clustering that is demonstrated later.  Based on the coherency, it is possible to determine that 

well 336 does not belong with its neighbors and that well 204 could be clustered with its neighbors into a 

geological object. 

Maximization 

Coherency maximization is demonstrated using the estuarine data set with some of the wells shifted to simulate 

well busts or stratigraphic variation in well markers.  In the case of stratigraphic variation, the purpose of the 

maximization procedure is to identify wells that may require adjustment to optimize the space for geostatistical 

modeling, that is, to improve the transformation from physical space to stratigraphic space.  Twenty wells were 

selected with a variety of coherency values from the estuarine data.  The � coordinates of the wells were shifted in 

the range (-4, 4) using uniform random numbers. 

 For the maximization procedure, the search angle was increased so that facies intervals along neighboring 

wells that will lead to a higher coherency are found.  An angle of � = 0.4 degrees and search radius � = 0.4 meters 

were used.  The number of nearest wells to use was also increased from three to five, which helps to smooth out 

the result.  Results are shown in Figure 7.  Wells were shifted close to their original positions, which are assessed 

by histograms of the initial shift, and the shift after optimization relative to the original well positions (Figure 8).  

Summary statistics are provided in Table 4.  The three wells with an optimized relative shift greater than one meter 

are in a region with low coherent wells, much like well 136 from Figure 6.  A consequence of the optimization 

procedure is that many wells are shifted to reach the maximum coherency, not only the 20 wells that were 

artificially shifted for the test.  This information would normally not be available. 

In cases where the wells are known to be accurately positioned in physical and stratigraphic space, the 

maximization procedure can be used to guide the gridding process.  In this case, the grid conforms to the shift 

indicated by the maximization procedure and wells are not actually shifted. 
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Table 4: Shifted and optimized well position statistics. 

Case Mean Standard Deviation Minimum Maximum 

Shifted 0.05 0.74 -3.96 3.94 

Optimized 0.05 0.24 -0.60 1.45 

Clustering 

Coherency based clustering is demonstrated using the fluvial data set.  Clustering has several uses including the 

identification of stationary regions, detecting geological objects, detecting boundaries between different 

geological successions, building facies proportion trend models, and identifying questionable facies intervals.  

Work on post-processing the clustering results is still needed to evaluate these potential uses.  This example 

applied the clustering algorithm and displays the resulting data that were clustered together in the same plan 

views and cross sections as Figure 3 for comparison.  Data that belong to particular geological objects tend to be 

clustered together due to the high coherencies between the data.  This does not provide any information as to the 

location of the boundaries between neighboring geological objects or their exact shape, which is an area of future 

work.  For this example, indicator kriging is used to obtain an approximation to the location of geological object 

limits and shape that is easier to visualize than the sample data alone. 

 Clustering was run with the same parameters as maximization in the previous section: search angle and 

radius of � = 0.4 degrees and � = 0.4 meters and five nearest neighboring wells.  This results in 363 clusters, 200 

of which only contain one facies interval.  For quality control purposes, these single item groups could be checked 

with surrounding data to make sure the facies are correct and that the assumptions regarding the depositional 

environment are correct.  In cases where there is no explanation for the single item clusters, then such results are 

indicative of data with scales of heterogeneity smaller than the well spacing. 

Visualization of the resulting clustering is done using closed polygons that indicate which data belong to 

the same cluster (Figure 9).  Comparing this to the actual facies distribution, the match appears good considering 

no knowledge of the depositional environment was involved in the clustering.  For the same reason, there are 

differences, for example, levee objects are not in the shape of levees.  An area of future work to address this is to 

utilize training images to learn the tendency of geological objects to aid in the determination of object shapes and 

boundaries. 

5. Conclusions and Future Work 

This work introduced a measure of coherency that is useful for quality control and to aid in geological modeling, 

specifically for categorical variables.  Quality control is an important stage of geo-modeling, but can be quite 

demanding for large databases.  The coherency measure can be used to quickly identify potential problems with 

facies designations or well markers.  Another use of coherency is clustering data into groups having similar facies.  

The approach is non-linear and resulting groups of facies can form objects with shapes that would otherwise be 

unattainable using traditional geostatistical approaches for categorical data. 

 Several areas of future work have been identified.  The coherency measure has been developed for both 

continuous and categorical data.  Testing with continuous variables is needed.  It would also be beneficial to 

compute the coherency using a categorical variable and one or several continuous variables together.  In this case, 

data with a high coherency will have similar statistical properties and coherency-based clustering would help to 

identify stationary regions.  Another area of future research is to utilize the clustering and maximization 

procedures to aid in the process of geological gridding.  More work is needed on the clustering algorithm including 

learning cluster shape and tendency from training images and post-processing clustering results into geological 

objects, facies trend models, and even facies realizations. 
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Figure 1: Parameters involved in the coherency calculation. 

 

Figure 2: Basic concept of geological zonation using coherency.  Wells are labeled A through D and facies 1 to 3.  The 

difference between coherency of each well using the left and right neighbors and coherency between well pairs is shown.  

Determining if a zone boundary exists in facies 3 based on well pair coherency is problematic. 

 
Figure 3: Example random (left) estuarine (middle) and fluvial (right) data sets for coherency.  Cross sections are at 

approximately half distance along Y. 
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Figure 4: Coherency results for random (left), estuarine (middle) and fluvial (right) data sets. 

 

 
Figure 5: Histograms of coherency for random (left), estuarine (middle) and fluvial (right) data sets. 

 
Figure 6: Examples of low and high coherency for the estuarine example.  The slice at D = EF. G of the estuarine model is 

shown in the location map. 
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Figure 7: Example of coherency maximization showing initial shifted wells (left), the shift that leads to maximum coherency 

relative to the initial shift (middle) and relative to the original well positions (right). 

 
Figure 8: Histograms of shifted well positions (left) and well positions after optimization (right) relative to their original 

position. 

 
Figure 9: Clustering results summarized using polygons (left) compared to the actual facies distributions (right). 


