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Bayesian Linearized Seismic Inversion with  

Locally Varying Anisotropy 
 

E. L. Bongajum, J. Boisvert and M. D. Sacchi 

 

Inversion of seismic data is commonly used in the quantitative estimation of elastic properties of 

reservoirs. In some cases, the spatial variations of these elastic properties characterize geological 

formations that display nonlinear features such as channels or folds with complex spatial anisotropies. 

Consequently, single trace-based inversions are often used because it is difficult to impose spatial 

constrains in the inversion to provide geologically consistent estimates of the elastic parameters at the 

seismic scale. Locally varrying anisotropy (LVA) is incorporated in the Bayesian formulation of the inverse 

problem to impose such spatial constrains in the lateral continuity of the elastic properties. This favours a 

multiple trace-based inversion. The formulation uses covariances obtained through the quantitative 

modeling of the spatial statistics of the elastic parameters. The computation of spatial correlation uses 

anisotropic distances between locations within the geological formation. A synthetic validation of the 

method using a least squares approach shows an improvement in the inference of acoustic impedances 

from seismic data.  

 

Introduction 

Regularization methods, which can also be justified from a Bayesian perspective, used in the formulation 

of inverse problems are very popular (Oldenburg et al., 1983; Sacchi et al., 1998; Velis, 2009; Bosch, 

2009). Although these methods allow for better estimation of the model (m ) that can adequately 

explain the geophysical data, implementing such methodology to geophysical inverse problems can be 

challenging. For example, in the inversion of seismic data for impedance, the solution is non unique due in 

part to the limited bandwidth of the seismic data. Moreover, the impedance models are invaluable to 

constrain the geostatistical simulations of porosity (Doyen, 1988). 

Since the estimated model that fits the geophysical data often characterizes the spatial variation 

of a physical rock property within a target zone, one of the goals of inversion is for the model to fully 

capture the small, intermediate, and large scale fluctuations of these physical rock properties as depicted 

in well logs. While the terminology may be more familiar for geostatisticians, equivalent terms used by 

geophysicists include high, intermediate and low frequency information respectively. Considering that 

geophysical data are often sampled discretely in finite space or time, the model (m ) that explains the 

observed data is considered to be an element of a model space, and can be written as a vector: 

1 2 i N
m ,m ,…,m ,…,m  

T

m =  

where the elements of the vector (
i
m ) represent the model parameters. 

Nowadays, more advanced formulations are used such that seismic inversion combines geology, 

well logs, rock physics and geostatistics. Examples of applications that use rock physics relations to 

constrain seismic inversion include Bosch (2004) and Eidsvik et al. (2004). The idea of using geostatistics to 

condition the seismic inversion (geostatistical inversion) on the other hand was initially proposed by 

Haase and Dubrule (1994). The latter advocate for the geostatistical simulation process to be an integral 

part of the seismic inversion process. In the approach proposed by Haase and Dubrule (1994), the seismic 

data is used to constrain the inversion within the seismic bandwidth whereas the short scale information 

is constrained by the variograms obtained from the well logs. Consequently, geostatistics is important 

because it imposes true spatial constraints obtained from variograms especially for small scales that are 

not captured by the band-limited seismic data (Bosch et al., 2010). Torres-Verdin et al. (1999) 

demonstrate how geostatistical inversion can be applied for reservoir characterization. Other authors 

such as Pendrel and Van Riel (1997) used geostatistics differently whereby kriging is used to constrain the 

low frequency information of the acoustic impedance model that is not present within the seismic 

bandwidth.  
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Most of the inversion techniques are conducted on a trace by trace basis to estimate the model. 

Hence, emphasis is placed on the vertical variability estimated from variograms at the expense of the 

lateral variability. Eidsvik et al. (2004) use a Bayesian framework to formulate an amplitude variation with 

offset (AVO) inverse problem such that it incorporates lateral spatial continuity in the prior probability 

density through random markov field assumptions. Jensäs'(2008) approach is also set on the assumption 

of Markov properties whereby the inversion result on one trace is only dependent on the immediate 

neighbouring traces. In most of the inversion schemes of this category, one of the important 

consideration remains in carefully defining the directions of lateral continuity such that nonlinear 

geological continuities can be well captured. In this paper, we focus our investigation on using covariances 

that incorporate such information in the definition of the prior model. This can be done by considering 

locally varrying anisotropy (LVA) that helps to incorporate directional dependence in the geological 

continuity. Boisvert and Deutsch (2011) provide an application of geostatistical simulations with LVA 

where nonlinear distances used in the computation of the covariances are used to incorporate geological 

anisotropies. Anisotropy in the present context characterizes the aspect ratios in the scale lengths 

associated to the directions of maximum and minimum continuity. 

In the following sections, a brief description of the Bayesian formulation of the inverse problem 

is first presented. This is followed by synthetic tests for acoustic seismic inversion where details on how 

the spatial correlations between the model parameters are incorporated in the inversion process are 

provided. The investigations use synthetic seismic data of different signal to noise ratios. 

 

The Inverse problem 

The Bayesian framework forms a general, consistent and convenient way of combining multiple model 

information in solving inverse problems. The fundamental ingredients required to formulate an inverse 

problem includes prior information of the model, observations (data) and the physical theory that relates 

the model parameters to the observed data. These can be combined to provide a posterior probability 

density that is given as 

( ) ( ) ( )cLσ ρ=m m m
,
 

where ( )σ m
 
is the posterior density, c  is a normalization constant, ( )L m

 
is the likelihood function 

and ( )ρ m  is the prior model density. A more explicit form of the above expression can be written as 

( ) ( ) ( )|cLσ ρ=m d m m ,  

with d  being the data. In the real world, we are usually faced with the challenge of imperfect 

mathematical formulations to describe physical systems under study (modelization uncertainties) and 

noise. In this work, we assume the mathematical formulation of the physical theory to be exact and that 

the observed data consists of noise hence the notation 
obs
d where 

( )obs
≈ +d g m noise , 

with ( )g m
 
representing the mathematical formulation of the physical system under study. In other 

words, it is a function that maps the model parameters to the data space.  

The main underlying challenge of the Bayesian approach resides on the choise of probability 

model adopted (Tarantola, 2005). ( )|d mL
 

statistically characterizes predictions of observed 

data/measurements given the model parameters. In other words, it characterizes the misfit between 

predicted and observed data. Let us consider the misfit to be a Gaussian model where we have 

( ) ( )( ) ( )( )1

1 obs d obs

1
| c exp

2
L

− 
= − − 

 
d m g m d C g m d

, 
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with 
d
C

 
representing a covariance matrix that characterizes the uncertainties in the observed data  and 

1
c as a normalization constant. 

The prior model ( ( )ρ m ) is the probability of the information obtained independently of the 

observed data. If we consider the model parameters to be part of a Gaussian random field, then it suffices 

to argue that the model parameters being investigated is a random realization of a Gaussian random field 

with a mean 
prior
m . Thus, ( )ρ m maximizes the probability of the model m to be close to 

prior
m

 
whereby  

( ) ( )( ) ( )( )1

2 obs m obs

1
c exp

2
ρ − 

= − − 
 

m g m d C g m d , 

with 
2
c as a normalization constant and 

m
C  as the prior covariance matrix for the model parameters.  

m
C

 
contains information that describes the correlation between the various model parameters. 

Some authors that use the Gaussian model in describing ( )ρ m  include Bosch (2004) and 

Buland and Omre (2003). On the hand, authors such as Sacchi et al. (1996) and Alemie and Sacchi (2011) 

show applications where a Cauchy model is used to describe ( )ρ m in order to obtain a sparse solution 

of an inverse problem.  

The formulation of the posterior density in this work will also be Gaussian where the solution can 

be obtained by finding the maximum posterior model (MAP solution). This approach provides one 

solution in the least squares sense (“best estimate”). The underlying principle of the best estimate of the 

model parameters is such that the misfit between the observed data and estimates of the observed data 

are minimized. The minimization procedure of the data is constrained by other conditions defined within 

the formulation of the prior model. The posterior density is thus given as     

      

 

where, 

( )( ) ( )( ) ( ) ( )1 1

obs d obs prior m prior

1 1

2 2
J

− −   
= − − + − −   
   
g m d C g m d m m C m m  

represents the cost funtion to be minimized. 

If the relation between the model parameters and the data is nonlinear, nonlinear optimization 

techniques which require an iterative approach to the solution can be adopted (e.g. Newton optimization 

method, Tarantola, 2005; Bosch, 2004). On the other hand, let us assume ( )g m  can be expressed as 

linear combination of the model parameters i.e. ( ) =g m Gm . By equating the first order partial 

derivatives of J  to zero, a simplified expression for m  is given by 

( ) ( )T 1 1

d obs m priorT
0− −∂

= − + − =
∂

G C Gm d C m m
m

J
J                        (1) 

( ) ( )
1

T 1 T 1

m d prior m d obs

−
− −= + +m I C G C G m C G C d  .                             (2) 

 

Results and Discussion 

 

a) Example of Impedance prediction from Seismic Amplitude 

( ) c expσ  =  m J



Paper 202, CCG Annual Report 12, 2011 (© 2011) 

 202-4 

The inverse problem is formulated such that the logarithm of the acoustic impedance ( )plog=m Z  is 

the parameter of interest. Such a formulation allows for the use of a linear operator to convert 

impedance information to seismic amplitudes and hence the inversion procedure follows equation 2 

where G is the product of a convolution matrix (contains information of the source wavelet) and a 

differential matrix. The covariance matrix 
m
C is based on the statistics of the logarithm of the impedance. 

The 2D synthetic data for the impedance model is derived from the wyllie transformation (Bosch, 2004) of 

a kriged 2D porosity (φφφφ ) model to which we added some gaussian noise in order to provide some 

deviation from the wyllie transformation (Figures 1 and 2). The 2D synthetic porosity model was derived 

by using an LVA field (Figure 2c), information at two well locations (Figure 3) and algorithms for kriging 

with LVA (Boisvert and Deutsch, 2011). 

In performing the inversion, it is ideal to have a prior model that is close to the solution space. 

Often, information from the prior models can be obtained from the existing measurements of the model 

parameters of interest. In geophysics, petrophysical databases for velocities, densities, porosities as well 

as borehole logs can be valuable sources for such information. In the present study, synthetic tests are 

perfomed to determine impedance model from seismic data to which some band-limited noise has been 

added such that the signal to noise ratio (SNR) is 1 (Figures 4a & b). The zero-offset synthetic seismic 

amplitudes are obtained from the impedance model through the convolution process. The source 

waveform is a ricker wavelet with a dominant frequency of 50Hz. The prior model is based on the trend of 

m  (mean). 
The investigations have been designed to probe the impact of the structure of the model 

covariance matrix in the quality of the inversion results. The case studies considered are summarized 

below. 

Case 1: Model parameters at each time sample are independent. This means 
m
C is a diagonal matrix. The 

diagonal terms are the variance,  ( )2mσ , of the model parameters. Knowledge of the standard deviation 

of the gaussian noise 
n

σ can also be used in the estimation of 
2

m
σ . The normal distribution of the noise 

causes the misfit in the seismic amplitudes,  

( )( ) ( )( )1

1 obs d obs
J

−= − −g m d C g m d , 

to reduce to a chi-square statistics. Consequently, the expected value, ( )1E J  , will be N  (number of 

trace samples).  

 

Case 2: Assumes model parameters are coupled in the depth direction. This means the off-diagonal terms 

of 
m
C are non-zero. The elements of these matrices are obtained from parametric model fits to 

experimental variograms or covariances computed from well logs (Deutsch and Journel, 1998; Goff and 

Jordan, 1998). In this work, the synthetic well log coincides with the location of trace 5 (CDP = 5) in the 2D 

seismic data. The exponential model was used throughout this study. While the model parameters at a 

given trace location are considered to be coupled, the traces are considered to be independent of each 

other. If there are N  samples per trace, then the covariance matrix is an MN×MNmatrix with M 1= , 

( )

11 1N

m i,i

1N NN

c c

c c

 
 

= =  
 
 

C C

L

M O M

L
,

 

where 
jk
c

 
represent the covariance between  the model parameters at time samples j  and k  in trace i . 
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Case 3: Assume the model parameters are coupled in the vertical and lateral direction. The 

crosscovariance between neighbouring traces is also included in the covariance matrix which allows for 

multiple traces to be inverted at once ( )M>1 . The covariance between any two points takes in to 

account a geometric anisotropy of 0.01 in the ranges (Deutsch and Journel, 1998; Goovaerts, 1997). The 

major direction of continuity is horizontal (along direction of increasing CDP number). The model 

covariance becomes a composite matrix with fundamental building blocks of N×N covariance matrices 

( )i,j
C  :  

( ) ( )

( ) ( )

1,1 1,M

m

M,1 M,M

 
 
 ==
 
 
 

C C

C

C C

L

M O M

L

where the subscripts represent pairs of trace numbers. 

 

Case 4: Unlike Case 3, the computation of the covariance is conditioned by information of the LVA field 

whereby two points in space are related by the path with the minimum anisotropic distance. Boisvert and 

Deutsch (2011) provide further details of how such a model covariance matrix can be computed. 

Background information of the LVA field can either be acquired from an understanding of the geologic 

features under study or directly from the computation of local dips in the coherent reflections found in 

the seismic data. In this study, the known LVA (Figure 2c) field is used in the computation of the 

experimental variogram from the true model (natural logarithm of the impedance). Subsequently, a 

parametric function that fits the experimental variogram was determined. 

Table 1 summarizes the parametric models used in the computation of the covariance matrix for 

the respective cases. Dimensionless lag units are used to characterize locations in the the 2D grid in which 

estimates of the impedance are to be computed. Three quantitative methods are used to characterize the 

fitness to the “true” model: correlation coefficient of the estimated-true cross plots, root mean square 

error, and the variance of the estimated model parameters. The inversion process follows step (2) and the 

inverse of the wyllie petrophysical transform (Bosch, 2004) is used to obtain estimates of the porosity 

from the estimates of the impedance.  

 

Table 1: Summary of parametric models used in the computation of model covariances for cases 2, 3, and 

4. 

Figures 5-8 show the results of the inversion for trace 1(CDP=1) in the respective cases when 

SNR=1. As expected, all cases provide smooth solutions. The 2D plots of the estimated impedance models 

(Figure 9) provide a better view for one to assess the quality of the fit in the respective cases. For a data 

set with SNR as low as 1, the results suggest that better prediction of the model parameters is achieved 

once coupling between the model parameters are accounted for within 
m
C . The high correlation 

between the estimated model parameters and the true model as well as the high variance obtained when 

 Parametric model nugget range variance 

Case 2 Exponential 0 amin= amax=1.6 
Variance of ( )plog Z  at 

CDP=5 

Case 3 Exponential 0 

amax = 100amin; amin=1.6 

Major direction  of continuity 

is along direction of 

increasing  CDP number 

Variance of ( )plog Z  at 

CDP=5 

Case 4 Exponential 0 

amin= amax=93 

(Non Euclidean distance, 

Boisvert and Deutsch, 2011) 

Variance of ( )plog Z  at 

CDP=5 
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the inversion is constrained by locally varrying anisotropy corroborate the importance of properly 

accounting for vertical and lateral correlation between model parameters (Figure 10).  

We also performed tests using seismic data with SNR=10 (Figure 4c). Table 2 summarizes the 

results for all the cases in this study where the goodness of the prediction is assessed for trace 1 as well as 

for all the traces combined. Estimated 2D impedance models from the second test are shown in Figure 11. 

While the aspect of using LVA to constrain the vertical and lateral continuity between the model 

parameters improves the quality of the model estimates, the results in Table 2 indicate that the 

advantage is marginal with respect to the other scenarios when the signal to noise ratio is large (SNR >10). 

 

Table 2: Standard deviation (STD) of the predicted impedance model parameters, root mean square 

errors (RMSE) and corresponding correlation (Corr) between the predicted and “true” impedance model 

parameters. 

 CDP=1 All traces 

Corr RMSE 
(x 10

6
 Kg/s m

2
) 

STD 
(x 10

6
 Kg/s m

2
) 

Corr RMSE 
(x 10

6
 Kg/s m

2
) 

STD 
(x 10

6
 Kg/s m

2
) 

SNR=1 

Case 1 0.647 1.29 1 0.495 12 0.92 

Case 2 0.644 1.30 1.25 0.481 13.1 1.21 

Case 3 0.738 1.14 1.31 0.560 11.4 1.01 

Case 4 0.723 1.17 1.29 0.609 11.3 1.19 

SNR=10 

Case 1 0.872 0.824 1.49 0.787 8.36 1.14 

Case 2 0.872 0.832 1.63 0.772 8.78 1.23 

Case 3 0.893 0.759 1.52 0.809 7.97 1.18 

Case 4 0.887 0.777 1.52 0.826 7.70 1.23 

 

b) Discussion 

In this study, the numerical tests have been solved using least squares methods. Although such methods 

may give local solutions, they however provide satisfactory results as demonstrated in this study. General 

solutions can be obtained by using monte carlo methods. Jensäs (2008) also used least squares 

optimization methods in order perform amplitude variation with angle (AVA) inversion. In order to obtain 

estimates of the velocities (P- and S- waves) and densities, Jensäs (2008) constrains the lateral continuity 

in the inversion by assuming markov properties whereby the inversion result on one trace is only 

dependent on neighbouring traces i-1and i+1 . The latter can also be viewed as conditional 

independence (Jensäs, 2008): given traces i-1  and i+1 , the elastic parameters of trace i  are 

independent of all other traces except for trace i-1  and trace i+1 . Unfortunately, such approach makes 

no accommodation for local dips associated to the lateral continuity of the model parameters one wants 

to estimate. Although the parameter estimated in our study is different from Jensäs’ (2008) work, we go a 

step further to impose lateral continuity constrains in the inverse problem such that information about 

the local dip variations associated to the model parameters are included in the computation of the model 

variance matrix. The elements of the covariance matrix are obtained from parametric model fits to 

experimental variogram computed from the true 2D model of the natural log of the impedance with 

consideration for the LVA field shown in Figure 2c (Boisvert and Deutsch, 2011). An initial inversion of the 

2D impedance model whereby the parameters are considered to be independent can be used as hard 

data when the LVA field is used in the computation of the experimental variogram. 

In most inversion problems, proper consideration for lateral continuity is important. Improper 

definition of the lateral continuity may introduce artifacts in the 2D image of the estimated model 

parameters. For example, zones where layers merge cannot be properly estimated if the constrain for 

lateral continuity does not account for dipping events (Jensäs, 2008). The results in Figures 9a-c and 11a-c 

highlight the pitfalls in the inversion when the constrains for lateral continuity are not properly defined: 

single trace-based inversion causes the lateral continuity to be punctuated by vertical stripes; assuming 

geometric anisotropy where the major direction of anisotropy is horizontal introduces layer-like features 

(e.g. between 0s and 0.01s – Figure 11-c) in the estimated 2D image that are not present in the true 

impedance model (Figure 2b). Another advantage for using the proper lateral continuity constrains is that 
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lateral variations in the estimated model parameters look more geologically realistic. This can be observed 

by comparing images for cases 1-3 against those obtained when the LVA approach is used (Case 4) 

irrespective of the SNR associated to the seismic data. Results from cases 1-3 fail to properly capture the 

lateral continuity of some of the layers as shown in the true model. Some of the artifacts in the inversion 

results can also be attributed to the strategy adopted in implementing the inversion. This is especially 

observed in the results obtained in case 3 (Figures 9c and 11c) where the inversion was conducted by 

using multiples of 15 traces. The size of the traces used can be directly correlated to the horizontal scale 

of the artifacts in the inversion. The choice of using subsets of the traces was to reduce computation time. 

A similar strategy was also adopted to obtain results for case 4. However, artifacts associated to the 

implementation strategy are virtually absent for the results in case 4. Based on these observations, we 

thus considered the implementation strategy to have negligible bearing in the overall assessment of our 

modeling results. 

 

Conclusions 

Using Bayesian theory, we modify the formulation of the general inverse problem commonly found in 

geophysical inversion. The formulation uses geostatistical tools to impose constrains on the lateral 

continuity of the model parameters. This is achieved by modifying the model covariance matrix such that 

its elements consist of covariances computed with consideration for locally varrying anisotropy (LVA). 

Least squares results obtained in this work corroborate that better geologically consistent prediction of 

the model parameters can be achieved when LVA is considered. Unfortunately, the main challenge in this 

method is in defining the LVA field. When knowledge of LVA exists, it should be incorporated in the 

seismic inversion process in order to improve the predictions of the model parameters of interest 

especially from seismic data with a low signal to noise ratio. 
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Figures 

 

 

 

 

 

 

Figure 2: Synthetic 2D porosity (a) and 

impedance (b, x 10
6
 Kg/sm

2
) models.  The 

LVA field (c) was used in the kriging of the 

porosity model. The kriging process was 

conditioned by two identical synthetic logs 

at CDP=5 and CDP=95. A wyllie transform 

was then used to generate the impedance 

model from the porosity model. The small 

scale variability observed in the impedance 

model is due to the addition of some 

Gaussian noise. Other parameters used in 

the wyllie transformation include: matrix 

velocity=5600 m/s; matrix density=2600 

Kg/m
3
; fluid velocity=1587 m/s; fluid 

density=1000 Kg/m
3
 (Bosch, 2004). 

 

(a) (b) 

(c) 

Figure 1: Cross plots of 

impedance and porosity for the 

2D model. The line represents the 

wyllie petrophysical transform.  

( )plog Z
 
is the parameter that is 

estimated during the inversion 

process (
p
Z = Impedance). 
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Figure 3:  Histograms of the well logs at CDP=5. While the top row shows the porosity and impedance 

values, the bottom row shows natural log transformations of these variables. ( )( )log 1φ φ φ= − . 

 

 

 

 

 

 

Figure 4: Plot of synthetic seismic data 

without noise (a) and with band-limited 

noise: (b) SNR=1; (c) SNR=10. 

(a) (b) 

(c) 
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Figure 5: 2D Inversion test (Case 1, 

SNR=1) showing true porosity-

impedance models with its 

corresponding seismic data(blue), 

and the estimated porosity-

impedance model with its 

corresponding seismic data (red) at 

CDP=1. The fourth panel compares 

the residual of the seismic data (red) 

with the noise (gray) present in the 

observed data. An inverse of the 

wyllie transform is used to map the 

estimated impedance model to 

porosity. 

 

Figure 6: 2D Inversion test (Case 2, 

SNR=1) showing true porosity-

impedance models with its 

corresponding seismic data(blue), 

and the estimated porosity-

impedance model with its 

corresponding seismic data (red) at 

CDP=1. The fourth panel compares 

the residual of the seismic data (red) 

with the noise (gray) present in the 

observed data. An inverse of the 

wyllie transform is used to map the 

estimated impedance model to 

porosity. 

 

Figure 7: 2D Inversion test (Case 3, 

SNR=1) showing true porosity-

impedance models with its 

corresponding seismic data(blue), 

and the estimated porosity-

impedance model with its 

corresponding seismic data (red) at 

CDP=1. The fourth panel compares 

the residual of the seismic data 

(red) with the noise (gray) present 

in the observed data. An inverse of 

the wyllie transform is used to map 

the estimated impedance model to 

porosity. 
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Figure 8: 2D Inversion test (Case 4, 

SNR=1) showing true porosity-

impedance models with its 

corresponding seismic data(blue), 

and the estimated porosity-

impedance model with its 

corresponding seismic data (red) at 

CDP=1. The fourth panel compares 

the residual of the seismic data (red) 

with the noise (gray) present in the 

observed data. An inverse of the 

wyllie transform is used to map the 

estimated impedance model to 

porosity. 

 

Figure 9: 2D Inversion results for the impedance (10
6
 Kg/s m

2
, SNR=1): (a) CASE 1- model 

parameters are independent; (b) CASE 2- model parameters are correlated in the vertical 

direction (time axis); (c) CASE 3- correlation in the model parameters is characterized by 

geometric anisotropy where the maximum direction of continuity is horizontal; 

(d) CASE 4- correlation in the model parameters uses anisotropic distances that take the 

LVA field in to account. 

Clearly, the results in (c) show features that are the least consistent with those observed 

in the “true” model (Figure 2b). The color scales in these plots are identical to the one 

used in Figure 2b. 
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Figure 11: 2D Inversion results for the impedance (10
6
 Kg/s m

2
, SNR=10): (a) CASE 1- model 

parameters are independent; (b) CASE 2- model parameters are correlated in the vertical direction 

(time axis); (c) CASE 3- correlation in the model parameters is characterized by geometric anisotropy 

where the maximum direction of continuity is horizontal; (d) CASE 4- correlation in the model 

parameters uses anisotropic distances that take the LVA field in to account. The color scales in these 

plots are identical to the one used in Figure 2b. 

 

Figure 10: Cross plots comparing “true” with “estimated” impedance model parameters at CDP=1: top 

row- CASE 1 (model parameters are independent); bottom row- CASE 4 (correlation in the model 

parameters uses anisotropic distances that take the LVA field in to account). An inverse of the wyllie 

transform is used to map the estimated impedance model to porosity. 


