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Infill drilling campaigns are designed based on many different criteria, such as reduction of the global variance, 

improvement in the delineation of ore materials, reduction of uncertainty in the short term plan, etc. The design of 

infill campaigns is a longstanding problem that is not usually solved from the perspective of the impact on the 

revenue of a mine plan. In this paper, a sequential stochastic methodology to calculate the drilling locations of infill 

campaigns is presented. The proposed methodology is able to combine different criteria in the design of the infill 

campaign, including the effect on the revenue of the mine plan. The details of the implementation of the proposed 

approach are discussed in the paper. For illustration purposes, an example of the implementation on an artificial 3D 

deposit is presented. 

Introduction 

The optimal design of drilling campaigns is a problem that has been widely discussed by many researchers (Drew, 

1979), (Miller Jr., 1991), (Shieh, Chu, & Jang, 2005), etc. In mining, the design of exploratory or infill drilling 

campaigns are based on different objectives, e.g., minimizing the global estimation variance, improvement of the 

delineation of economic regions, etc. (Aspie & Barnes, 1990). This paper focuses on the design of infill campaigns. 

An optimal infill drilling campaign is defined as the one that maximizes the improvement of the geologic 

knowledge of the deposit to minimize the production gap while reducing the drilling cost. The evaluation of the 

impact of different infill campaigns on the profit margin of a mining project has been discussed by (Cuba & 

Deutsch, 2011). 

In this paper, a methodology to design infill campaigns is presented. The proposed methodology can be 

adapted to different objectives, e.g., minimizing the global and local variability of the project revenue, minimizing 

the geometric variability of the ultimate pit or next mining sequences, etc. The proposed methodology consists of 

a sequential selection of the locations of each infill drill-hole. The candidate infill drill-holes are simulated and the 

set of realizations is used to evaluate the impact in the specified objective functions. The proposed approach can 

be implemented as part of the simulated learning model (SLM) paradigm (Cuba, Boisvert, & Deutsch, 2010) to 

account for the discount effect due to drilling at different time periods. The details of the implementation are 

discussed in the next section and an example based on a 3D deposit is presented in the following section. 

Stochastic sequential evaluation of infill drill-holes 

The proposed approach consists of a stochastic evaluation of the candidate infill drill-holes that can be drilled over 

the deposit. Due to the large number of candidate locations, a searching algorithm is implemented to reduce the 

computation time, which consists of identifying potential regions in the deposit. The search algorithm is initialized 

by searching over a coarse drilling pattern over the deposit, and as potential regions are identified, the drilling 

pattern is reduced in those regions to increment the accuracy of the search. An important part of the evaluation is 

the definition of the metrics of performance. The infill drill-holes can be targeted based on their effect on: the 

dispersion of the total revenues of the ultimate pit, the dispersion of the total amount of ore material within the 

ultimate pit, the geometric variability in the position of the following next sequence, the geometric variability of 

the ultimate pit, etc. 

For each location in the initial drilling pattern, the sampled values of each of the infill drill-holes are 

simulated conditioned to the existing data. An ultimate pit and its corresponding mining sequence is calculated for 

each realization of the infill drill-hole candidate and the existing data. The simulated infill drill-holes can be ranked 

according to the targeting criteria. For example, in the case of the reduction of the variability of the revenue 
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criteria, the drilling location that results in the maximum variance of the ultimate pit revenues is targeted. An infill 

drill-hole at the targeted location will confirm the set of geologic features in the sampled region thus eliminating 

the major source of revenue variability in the deposit. To improve the accuracy in the selection of the infill drilling 

location, a denser drilling pattern is drilled around the more variable regions. To add more infill drill-holes to the 

drilling campaign, the previous simulated infill drill-holes are kept as part of the available information and the 

searching process is repeated again. 

The proposed approach samples the different variability fields depending on the targeting criteria. The 

searching algorithm reduces the computation time to find the optimal targeting locations. During the evaluation of 

the infill locations two or more criteria can be considered by weighting the importance of the criteria in the ranking 

of the locations. 

Example 

The example consists of an existing exploratory campaign of 15 drill-holes sampled over a regular grid pattern of 

75 x 75 m. The dimension of the deposit is 400 x 240 x 160 m
3
. The initial grid search covers the deposit over a 50 x 

50 m regular grid pattern (see Figure 1). The search grid fairly covers the unsampled locations left by the existing 

campaign. In this example, the target drilling location is calculated based on two criteria: 1) reduction of the 

variability of the total ore material mined and 2) reduction of the variability of the total revenue of the ultimate 

pit. The evaluation of the candidate locations is done by simulating 10 realizations per location. 

For the case of reducing the variability of the ore material mined, the standard deviation of the total ore 

content within the ultimate pit is used as a metric of performance. At each search grid location, the standard 

deviation of the ore content within the ultimate pits affected by the infill drill-hole realizations is used. The 

variability at the existing data location is set to zero, since drilling at a sampled location will have no effect in the 

geometric variability of the ultimate pit. Based on the standard deviations of the total ore content at the locations 

of the search grid, an interpolated map is generated to identify the more sensitive regions (see Figure 2 - left). The 

regions of high values are identified as candidate regions. If necessary, the search grid can be refined to improve 

the accuracy of the map. The same process is repeated for the case of reducing the variability ultimate pit revenue. 

The interpolated map shows the more sensitive regions for positioning an infill drill hole based on the ultimate pit 

revenue criteria (see Figure 2 - right). 

From the two maps in Figure 2, the targeted locations for positioning the infill drill-hole are calculated at 

the maximum value in the map. By drilling at these locations, the regions of high variability in each respective 

criterion are reduced. In Figure 3, the targeted locations with respect to the ore content and ultimate pit revenue 

are presented. If additional drilling is required, the process is repeated while keeping the simulated infill drill-hole 

at the targeted location as part of the existing dataset. 

Conclusions 

The proposed approach is a sequential methodology that can be used to evaluate the sensitivity of the mining 

sequence based on different criteria. The goal of designing an infill drilling campaign is to reduce the variability of 

the metric of performance of the criteria evaluated. In the proposed methodology, many criteria can be combined 

in the decision of positioning an infill drill-hole by weighting the metrics according to their respective importance 

in the decision. 

Although the implementation is computationally expensive, the algorithm can be implemented in parallel. 

Modern computers are able to handle many computational processes at the same time. A parallel implementation 

reduces significantly the computation time of the implementation. 
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The proposed methodology can be implemented as part of the SLM to evaluate infill campaigns from the 

perspective of reducing the variability in the dispersion of the planned regions within periods. The SLM paradigm 

allows that the proposed infill campaigns can be evaluated as a function of time.  
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Figures 

 

Figure 1: Drilling grid of existing drill-holes (empty dots) and initial search grid (black dots) 

 

Figure 2: Map of total ore variability (left) and total revenue variability (right) within the ultimate pit 
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Figure 3: Targeted infill drilling location based on reducing ore variability (left) and based on reducing ultimate pit 

revenue variability (right) 


