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Conditional	Standardization:	A	Multivariate	Transformation	for	the	

Removal	of	Non-linear	and	Heteroscedastic	Features		

Ryan M. Barnett 

 

Reproduction of complex multivariate features, such as non-linearity, heteroscedasticity and constraints, is 

a common goal when simulating multiple related geometallurgical variables. Traditional co-simulation 

modeling frameworks typically assume multivariate Gaussianity, whereby the relationships between 

variables are fully defined by the covariance matrix. Non-linear and heteroscedastic features are not 

captured by this statistic, and therefore will not be reproduced. In the case of independent simulation of 

related variables, linear transformation techniques such as principal component analysis (PCA) and 

minimum/maximum autocorrelation factors (MAF) may be used to decorrelate the variables prior to 

modeling, with back-transformation reinstating the original correlation. Unfortunately, as these 

techniques produce linear combinations of the original variables, complex relationships will be 

unaccounted for once again. Conditional Standardization is introduced as a simple and intuitive 

transformation for the removal of non-linear and heteroscedastic features. Given one or more conditioning 

variables and a variable is conditionally standardized by the subtraction of its conditional mean, and the 

division of its conditional standard deviation. The conditional mean and standard deviation functions may 

be obtained through binned partitioning of the distribution based on the probability class of the 

conditioning variables, or through continuous parametric regression. Distributions that approach linearity 

and homoscedasticity are produced, allowing for the more effective application of linear transformations 

or simulation methods. 

Introduction 

The multivariate Gaussian model is commonly implemented for geostatistical simulation of multiple 

related variables, due to the simplicity and mathematical tractability of the distribution. Unfortunately, 

geologic variables are rarely Gaussian in nature due to the existence of complex features such as non-

linearity, heteroscedasticity and compositional or stoichiometric constraints. There are a number of 

transformation techniques that are available for the removal of these complex features, producing well 

behaved distributions that approach Gaussianity. As the dimensionality of the data to be modeled may 

render co-simulation frameworks impractical, there are additional transformations for the decorrelation 

of variables, allowing independent simulation to proceed without the need for cross-variograms. 

The stepwise conditional transformation (Deutsch and Leuangthong 2003) decorrelates variables 

to produce a multivariate normal distribution, while accurately reintroducing complex features on the 

back-transformation. Although it has many powerful features, the data intensive nature of the stepwise 

transform and the fact that it does not address correlation beyond the zero lag distance may lead 

practitioners to other decorrelation methods such as principal component analysis (PCA) (Johnson and 

Wichern 1988) or minimum/maximum autocorrelation factors (MAF) (Swizter and Green 1984). These 

two linear transforms require less data, potentially allow for dimension reduction, and in the case of MAF, 

provide a more robust spatial decorrelation.  Due to their linear nature, however, PCA and MAF do not 

capture complex multivariate features, and associated realizations may exhibit poor reproduction of 

complex features as a result.  

Conditional standardization is proposed as a potential solution for these complex relationships, 

transforming non-linear and heteroscedastic data to approach linearity and homoscedasticity. In doing so, 

well behaved distributions that are more suitable for either co-simulation frameworks or linear 

decorrelation transformations are produced.  The following paper will introduce this transformation, 

providing the simple theory, practical considerations, and a geometallurgic case study to demonstrate the 

technique. Parameters for the associated CCG programs are presented and discussed in the appendices. 

Theory 

Consider a bivariate distribution, consisting of two variables X and Z  for n  number of observations. 
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Suppose that the relationship between these two variables is non-linear and heteroscedastic in nature, 

such as the schematic bivariate distribution displayed in Figure 1. Observe that subtracting the Z  values 

by a function which describes the mean of Z conditional to the value of X  (red line in Figure 1), will yield 

residual values which have non-linearity effectively removed. Likewise, if the Z values are divided by a 

function which describes the standard deviation of Z conditional to the value of X , then a 

homoscedastic distribution will be produced. A bivariate conditional standardization is therefore given by 

Equation 1. 

{ }|
'

{ | }

X

X

Z E Z
Z

Var Z

−
=                                                                        (1) 

The derivation of these conditional mean and standard deviation functions may be determined either 

parametrically through a form of regression or through a non-parametric partitioning of the conditioning 

variable in a manner similar to the stepwise conditional transform. This concept may also be extended to 

higher dimensions, where a variable is transformed conditional to two or more variables. The trivariate 

case is illustrated in Figure 2 and represented by Equation 2, where the transformed 'Z variable is now 

conditional to the value of an additional Y  variable. The conditional mean in Figure 2 is now represented 

by a plane, as opposed to a line in Figure 1. Non-linearity is seen to remain in the transformed distribution 

of Figure 2 because the bivariate relationship of the conditioning variables was not first addressed. 
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The generalized form of the transformation for p  number of conditioning variables takes on the form 

shown in Equation 3. The back-transformation of the data or simulated values is simply achieved by a 

rearranging of the forward transformation, producing Equation 4. 
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Parametric vs. Non-Parametric Functions
 

The success of this transform is largely dependent on the calculation of conditional mean and standard 

deviation functions which accurately describe the non-linearity and heteroscedasticity of the distribution. 

A bivariate distribution is transformed in Figure 3 using several parametric functional forms and a 

discretized non-parametric function. While this figure applies the same parametric form to define both 

the mean and standard deviation functions for the sake of demonstration, the CCG program allows for 

independent consideration of each function. 

As is the case in the case in Figure 3, the non-parametric approach is generally expected to 

produce superior results, since no assumptions of the functional form of the distribution must be made. 

Parametric application may still be considered as a viable option in cases where a low number of data, or 

high dimensionality makes the discretized non-parametric approach impractical.  

 

Data Requirements of the Non-Parametric Approach 

There is no strict rule regarding the number of classes that are required for partitioning the conditioning 

variable, or the number of data that are required in each bin for the subsequent calculation of mean and 

standard deviation. The fewer the classes, the more likely that complex features will remain within the 

partitioned bins following transformation. Conversely, increasing the number of classes may reduce the 

number of data in each bin leading to unstable calculation of the conditional statistics.  

This is the same issue faced by the stepwise conditional transformation, where it was found that 

a general rule is to use between 10 and 20 classes for discretizing each conditional variable, with 10-20 
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data required as a minimum for the calculation of each bin (Leuangthong 2003). Based on observation this 

applies for conditional standardization as well, with between 10-20 data required as a minimum to 

calculate a stable mean and standard deviation for the partitioned bins. It then follows that between 10
n 

and 20
n 

data will be needed for the transformation, where n is the number of variables being considered.  

Consequently, only in the case of very large datasets (>10,000 as an absolute minimum), will the 

discretized approach be applied beyond a trivariate system. Unfortunately, multivariate distributions exist 

for geologic datasets of less than 10,000 observations and greater than three variables. In these cases 

practitioners may choose between either using a parametric calculation of the conditional functions, or a 

‘nested’ application of the non-parametric approach. To help ease this sensitivity, the CCG program is 

implemented to allow for a smoothing data search beyond the bin limits, as well as the enforcement of 

order relations.  

 

Nested Application 

Nested conditional standardization refers to using only one or two conditioning variables, to remove non-

linearity and heteroscedasticity with the higher order conditioned variables. Removal of the selected 

complex relationships will oftentimes resolve the majority of the complexity between variables that are 

not directly transformed conditional to one another. This is not guaranteed, however, and careful decision 

making must take place regarding the conditioning variables for this nested application. Considerations 

may include: (1) Reproduction of the multivariate relationships which the primary resource variable holds 

with all secondary variables (resource variables becomes the first conditioning variable for all 

transformations), (2) Reproduction of a multivariate relationship between secondary variables where the 

ratio or correlation between them is of critical interest (one secondary variable must condition the other), 

and (3) Conditioning of variables that demonstrate dramatic bivariate complexity. In the case of very non-

linear or heteroscedastic relationships between variables, it is unlikely that a well behaved distribution 

will be produced unless one variable directly conditions another.  These considerations will often lead to 

difficult decision making, as not all of them may be satisfied.  

 

Ordering 

The ordering of variables for this transformation is not trivial, as the variogram of a conditioned variable 

will no longer reflect the spatial correlation of only the transformed variable. As was thoroughly 

investigated for the stepwise conditional transformation (Leuangthong 2003), the variogram of a 

conditioned variable will instead be a combination of the original variogram, the variograms of the 

conditioning variables, and the cross-variograms formed between them. As spatial structure of the 

conditioned variables will be altered, it is recommended that variables of greater spatial structure be 

chosen as the lower order conditioning variables. One can imagine that conditioning a very continuous 

variable with another that is largely composed of the nugget effect, could have very negative 

consequences on the reproduction of both variables’ spatial structure. Practical considerations may weigh 

on this decision making, such as leaving spatial structure of the primary resource variable unaltered. 

Case Study 

A nickel laterite dataset is used to demonstrate this transformation, which is composed of 7740 

homotopically sampled assays. A typical mining model for a nickel laterite deposit will require the Nickel 

(Ni) resource, as well as Iron (Fe), Silica Dioxide (SiO2) and Magnesium Oxide (MgO), which all exert a 

critical influence on smelting extraction. Figure 4 displays the bivariate cross-plots between Ni, Fe and 

SiO2, where heteroscedastic, non-linear and constraint features are clearly observed and highlighted. 

Optimization of plant design, stockpiling, and blend planning will require realistic reproduction of the 

univariate variabiilty for each variable, as well as the multivariate relationships between them. 

Only a bivariate and  trivariate application will be demonstrated, though the conditional 

standardization workflow in Figure 5 includes MgO for readers to understand how the transformation 

may be applied beyond three dimensions in a nested fashion. This workflow figure displays that an initial 

bivariate transformation of Fe conditional to Ni is executed to  remove non-linearity and 

heteroscedasticity between the two variables. Next, a trivariate application will transform SiO2 to remove 
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non-linearity and heteroscedasticity from its relationship with the Ni and previously condionally 

standardized Fe. Finally, nested conditioning of the MgO would take place using Nickel and conditionally 

standardized SiO2. 

The non-parametric conditional standardization transform will be applied to a trivariate system 

of Ni, Fe and SiO2, all of which have been normal score transformed (Figure 6). A normal score transform 

is not required prior to conditional standardization, but it is recommended if outlying values are present.  

The parametric conditional functions are calculated through least squares regression, which is very 

sensitive to outying values. Likewise the non-parametric, discretized approach may have instability along 

the margins of a distribution in the case sparesely populated outlier values. In either case, the normal 

score transform will have a mitigating effect on this outlier issue.  

Conditional standardization was executed following the workflow in Figure 5, transforming the 

non-linear and heteroscedastic distribution that is seen in Figure 6, to the linear  and homoscedastic 

distribution in Figure 7. Following this conditional standardization, the transformed Ni, Fe and SiO2 were 

decorrelated using MAF to remove any remaining correlation beyond the zero lag distance, independently 

simulated using SGS (Deutsch and Journel 1998) and back-transformed. A second modeling workflow that 

does not include the conditional standardization step, but was identical in every other regard was also 

completed for comparison.  

The bivariate cross-plots for the back-transformed realizations with and without the use of 

conditional standardization are displayed in Figures 8 and 9 respectively. The major non-linear and 

heteroscedastic features of the original distribution (Figure 4) are also displayed for comparison. Due to 

the number of data being considered in both the original and simulation cross-plots (where 1 in 150 data 

are displayed for the later), it may be difficult to visualize whether the appropriate density of data is being 

reproduced. Bivariate gaussian kernel plots were produced in Figure 10 to aid in this comparison, as they 

display the relative density of the original and simulated distributions. With all other factors being held 

constant between these two modeling workflows, a significant improvement is seen in the reproduction 

of the non-linear and heteroscedastic features when using conditional standardization.  

Conclusions 

Complex multivariate features may be of critical importance to both the understanding and realistic 

modeling of a geologic deposit. Failure to account for these complexities prior to the use of covariance 

based geostatistical modeling and transformation tools, will often result in poor reproduction of the 

original multivariate relationships.  

Conditional standardization is a potential solution to this issue. After the removal of non-linear 

and heteroscedastic features, well behaved distributions are produced that more closely obey the 

Gaussian assumptions of traditional geostatistical techniques based on kriging or maximum entropy. 

Following simulation, the back-transformation then reinforces the original multivariate complexities. 

Conditional standardization has been successfully applied to a Nickel laterite case study, and the relevant 

programs are presented in the appendices to this paper. 
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Figures 

 

 
Figure 1: Schematic of a non-linear and heteroscedastic bivariate distribution that has been partitioned 

according to conditional probability classes of X (left). Subtraction of the conditional mean and division of 

the conditional standard deviation yields a linear and homoscedastic distribution (right). 

 

 

 
Figure 2: Schematic of a non-linear and heteroscedastic trivariate distribution that has been partitioned 

according to conditional probability classes of X and Y (left). Subtraction of the conditional mean and 

division of the conditional standard deviation yields a linear and homoscedastic distribution (right). Note 

that the bivariate non-linearity between X and Y has not been addressed prior to this transformation and 

therefore remains. 
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Figure 3: Demonstration of various calculations of the conditional mean function on the Ni and Fe cross-

plot (top). The ‘standard deviation’ function is then calculated using the residuals of the preceding mean 

function (middle). The standard deviation function is calculated in an identical manner as the associated 

mean function in this demonstration, though this constraint is not present with the program. Resultant 

conditionally standardized distributions for each set of mean and standard deviation functions are shown 

at the bottom, with the discretized method (far right) exhibiting the only acceptable results in this case. 

This figure serves to reinforce that the parametric approach must only be applied where the distribution 

obeys the chosen functional form. 
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Figure 4: Cross-plots between the untransformed Nickel laterite variables: Ni, Fe and SiO2. Major non-

linear and constraint features are outlined. 

 

 

 
 

Figure 5: Sequential conditional standardization workflow for four variables of the Nickel laterite dataset 
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Figure 6: Trivariate (bottom left) and individual bivariate cross-plots between normal score transformed 

Ni, Fe and SiO2. Marginal histograms display the univariate normality, but complex multivariate features 

clearly remain. This will be the ‘pre-transform’ distribution prior to conditional standardization.  

 

 

Figure 7: Trivariate (bottom left) and individual bivariate cross-plots between conditionally standardized 

Ni, Fe and SiO2 following the workflow in Figure 5 with a non-parametric execution. The complex features 

from Figure 6 have been removed. 
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Figure 8: Cross-plots between the simulated (1 in 150 displayed) and back-transformed Nickel laterite 

variables: Ni, Fe and SiO2 using conditional standardization and otherwise following an identical modeling 

workflow to the results shown in Figure 9. 

 

 

 
Figure 9: Cross-plots between the simulated (1 in 150 displayed) and back-transformed Nickel laterite 

variables: Ni, Fe and SiO2, following a workflow that does not account for complex features. 
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Figure 10: Bivariate Gaussian Kernel plots, displaying the relative distribution density for the original data 

(top), MAF with conditional standardization simulation (middle) and MAF without conditional 

standardization simulation (bottom). These plots correspond with the bivariate scatter plots in Figures 4, 8 

and 9 respectively. The densities were calculated using Jeff Boisvert’s biv_gauss_kernel program. 
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Appendix: Software 

 

The first Conditional Standardization program, constd, is used to perform the forward transformation 

using a GSLIB (Deutsch and Journel 1998) format of implementation. The corresponding required 

parameters are shown in Figure 10 and are explained below: 

• datafl: file with the input data to be transformed. 

• ixp,iyp,izp,iwp: columns for the x, y, z and weight variables. Refer to Note1 in the parameter 

figure for additional considerations. 

• tmin, tmax: trimming limits to filter out data. 

• xmin,xmax:  minimum and maximum value of the conditional x variable for allocating bins. 

Refer to Note2 in the parameter figure for additional considerations. 

• ymin,ymax:  minimum and maximum value of the conditional y variable for allocating bins.  

• ipar:  parametric (1) or discretized (0) calculation of the mean and standard deviation 

functions.  

If ipar=1, the following two lines apply: 

• xm_regress, ym_regress:  order of regression for the parametric calculation of the 

conditional mean. Refer to Note 3 in the parameter file for additional considerations. Note 

that if optimizing, all methods will be tested, with the functional form that produces the 

lowest mean squared error selected. When possible, it is advised to choose the functional 

form based on visual inspection of both the original distribution and resultant residual 

values, as mean squared error does not reveal issues regarding the bias of a function. 

• xstd_regress, ystd_regress:  order of regression for the parametric calculation of the 

conditional ‘standard deviation’. Refer to Note 3 in the parameter file for additional 

considerations.  

If ipar=0, the following three lines apply: 

• nxdis, nydis:  number of discretizations for partitioning the  x and y conditioning variables.  

• bxsize, bysize, nbmax:  multiplying factor of sample consideration limits in the x and y 

directions (refer to Note 4 in the parameter for additional details). Samples within each 

conditioning bin will be sorted by distance from the center, with samples above the nbmax 

threshold discarded. A large bxsize/bysize, a large number of nxdis/nydis, with a relatively 

low nbmax may therefore be used to improve stability of the function calculation in sparse 

regions of a distribution, while maintaining appropriate resolution in the dense regions. 

• iorder: order relations for the x mean and x standard deviation functions (refer to Note 4 in 

the parameter file for specifications).  

• outfl: file for output from the constd transform. This file contains the transformed z variable 

appended to the original data file. 

• outfltrn: output file for the transformation table. Contains conditional bin limits and 

associated mean/standard deviation of the transformed variable. 
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Figure 10: Parameter file for the forward constd program 

 

 

 

The second Conditional Standardization program, constd_b, is used to perform the back-transformation. 

The corresponding required parameters are shown in 11 and are explained below: 

• datafl: file with the input data to be transformed. 

• ixp,iyp,izp: columns for the x ,y, and z variables. Refer to the Note in the parameter figure 

for additional considerations. 

• tmin, tmax: trimming limits to filter out data. 

• trnfl: file containing the transformation table from the forward constd program. 

• outfl: file for output. This file contains the back-transformed variable appended to the 

original data file. 

 

 
 

Figure 11: Parameter file for the backward constd_b program 

 


