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A Global Kriging Program for Multiple Variables 
 

Brandon J. Wilde and Clayton V. Deutsch 

 

Global kriging is a useful method for generating artifact-free maps.  The local search is eliminated as the left-hand 

side of the system of equations is constant for all estimation locations.  Since it is constant, this potentially large 

square matrix must only be decomposed once.  This can lead to a large reduction in computation time.  Often, 

geologic variables are estimated accounting for their own spatial relationship as well as the spatial relationship 

with other variables.  A program for performing global kriging with the ability to account for multiple variables is 

presented.  The theory and implementation are discussed.  The ability to consider a data-error coordinate is also 

implemented.  The computer expenses, memory and time, are considered.  Both have a quadratic relationship with 

the number of data.   

Introduction 

Kriging is a spatial interpolation method used in the estimation of geologic variables such as mineral grades, 

petrophysical properties, and contaminant concentrations.  It is the only estimation method that can 

simultaneously account for the spatial correlation between the data and the point being estimated and the 

redundancy between data values.  Kriging calculates an estimate, ( )*
Z u , at a location by assigning weights, 

i
λ , to a 

number, n, of nearby data and using the data values, ( )i
Z u , to arrive at the weighted average shown in Equation 1

.  The weights assigned to each data point are determined by solving a system of equations consisting of the 

covariances between data points i and j, ij
C , and the covariances between the data points and an unsampled 

location, 
0i

C , where i,j=1,…,n as shown in Equation 2.   The computational speed of kriging is controlled by the size 

of the system of equations which is controlled by the number, n, of nearby data used for calculating an estimate; 

choosing to use a smaller number of data results in faster computation.  Unfortunately, using a small number of 

data to calculate estimates can result in maps of estimates with unrealistic artifacts.  To avoid the creation of these 

artifacts, the practitioner increases the number of data used to calculate estimates.  Even when many data are 

used, there may still be artifacts in the maps.   
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Neufeld and Wilde (2005) implemented a kriging program which uses all of the data to estimate all 

locations.  This approach, termed global kriging, eliminates artifacts and can be faster than the traditional 

implementation of kriging.  The improved computational efficiency comes from the recognition that the left-hand 

side (LHS) matrix of ij
C  values remains constant for all estimation locations.  Let  
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Equation 2 can be re-expressed as 

 [ ][ ] [ ]K kλ =  4 

The Cholesky decomposition of K yields K = R
T
R such that R is upper triangular and has all main diagonal entries 

positive.  Substituting into Equation 4 yields R
T
Rλ = k.  Let y = Rλ.  λ is unknown and therefore y is unknown also.  

However, y satisfies R
T
y = k.  Since R

T
 is lower triangular, y can be determined by forward substitution (Cormen et 
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al., 2009).  Once y is determined, the upper triangular system Rλ = y is used to solve for λ by back substitution 

(Watkins, 2002). 

For global kriging, the K matrix is constant for all estimation locations.  Thus, the step of decomposing the 

K matrix to get R needs only be performed once.  Only the k and λ vectors are updated for each estimation 

location to calculate ( )*
Z u .  This allows the calculation of artifact-free maps to be performed relatively quickly.   

The current implementation of global kriging (kt3d_gl) allows the user to perform simple kriging, ordinary 

kriging, kriging with a locally varying mean (LVM), and kriging with external drift (KED).  This work documents a 

global kriging program that is able to: 

• Cokrige multiple variables simultaneously  

• Perform collocated cokriging with multiple secondary variables 

• Perform kriging on non-isotopic data using a fourth dimension 

This program will also perform lower-level global kriging operations such as simple global kriging of one variable.   

Because of differences in units of measurement, the variances of the different variables may differ by 

several orders of magnitude.  This leads to large differences between rows of the cokriging matrix.  This may cause 

numerical instability when solving the cokriging system.  As such, a modification to the general kriging algorithm is 

made to ensure the stability of the system of equations.  Each variable is standardized to have a mean of zero and 

a variance of one.  The user inputs the variable means and variances and the following relation is used to 

standardize the values: 

j

jji

ji

mz
y

σ

−
=

,
,  

where jm is the mean of the j
th

 variable, jσ  is the standard deviation of the j
th

 variable, jiz ,  is the i
th

 sample of the 

j
th

 variable, and jiy , is the i
th

 standardized sample of the j
th

 variable.  The sills of all direct variograms are 1.0.  An 

error occurs if this is not the case.  This standardization step ensures that the covariances which populate the 

kriging system will be of similar magnitude causing the kriging system to enjoy increased stability.  Estimates are 

calculated in this standardized space and the standardized estimates are de-standardized by rearranging the above 

equation to solve for z.   

Global Cokriging 

Consider the situation where primary data ( ){ }
11 1 1

, 1,...,z nα α =u are supplemented by 1
v

N − secondary 

continuous attributes ( ){ }, , 1,..., , 2,...,
ii i i i v

z z n i Nα α = =u .  The kriging estimator (Equation 1) can be extended to 

incorporate that additional information: 
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where 
1i

λ are the weights assigned to the primary data and iα
λ are the weights assigned to the 1

v
N − secondary 

data.  Note that Equation 5 relates to global kriging in that the , 1,...,
v

n Nα α =  do not depend on u, that is, all of 

the data for all 
v

N data types are used.  This has the potential to make the K matrix become very large.  Consider 

that 2
v

N =  and that 
1 2

n n= .  The global kriging K matrix will have four times as many elements than if only the 

primary data were used.   

To solve for the weights in Equation 5, the following system must be solved: 
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where ( )
i jij

C α β
 −
 

u u  is the i j
n n×  matrix of data-data direct and cross covariances, ( )

iβλ  u is a vector of 

cokriging weights, and ( )1 ii
C α
 − u u is a vector of data-to-unknown direct and cross covariances.  The cokriging 

weights are obtained by decomposing the LHS matrix and performing forward and back substitution with the 

resulting triangular R matrix.  The LHS matrix can be very large when there is a large number of data or when there 

are many secondary variables.   

An example of the system of equations for three variables is shown in Figure 1.  There are n = n1+n2+n3 

samples leading to a LHS of size n x n.  The sub-matrices and subvectors shaded in red are covariances calculated 

from direct variograms.  The sub-matrices and subvectors shaded in blue are covariances calculated from cross 

variograms.  The size of the system of equations can become very large when considering multiple variables.   

The global kriging program documented herein is able to perform global cokriging.  The direct and cross 

variograms are specified the same as for the GSLIB program cokb3d (Deutsch & Journel, 1998).  A global cokriging 

example comes from the data used in Problem Set Four in Deutsch & Journel (1998).  There are 29 primary and 

2500 secondary data within the 50 x 50m area.  The 29 primary values and the 29 collocated secondary values 

(Figure 2) are used to estimate at the 2500 locations.  The direct and cross variograms come from Deutsch & 

Journel (1998).  The LHS matrix consists of the (29 + 29)
2
 = 3364 direct and cross covariances.  This matrix is 

decomposed and used to determine the weights at each of the 2500 locations.  The estimates are shown in Figure 

3.  They are similar to those shown in Deutsch & Journel with the absence of any search artifacts.   

The cokriging theory can be extended to the estimation of multiple variables simultaneously.  The LHS 

matrix remains the same while the RHS vector is updated for the estimation of each variable at a location.  This is 

illustrated in Figure 4.  The covariance values shaded in red are calculated from direct variograms while those 

shaded in blue come from cross variograms.  The number of variables to be estimated is specified in the parameter 

file as the number of primary variables. 

A global kriging system with three variables requires three direct variograms and three cross variograms.  

The inference of these variograms becomes demanding in terms of data as the number of variables increases.  As 

well, the joint modeling of these variograms is particularly tedious.  As such, cokriging has not been extensively 

used in practice (Deutsch & Journel, 1998).   

Collocated Cokriging 

Collocated cokriging is a modification of cokriging arising from the recognition that secondary data can be more 

densely sampled than primary data and consists of retaining only the collocated secondary variables 

( ) , 1,...,
v

z Nα α =u , provided they are available at all locations being estimated.  In a global kriging context, it is not 

feasible to consider all the exhaustive secondary data; the kriging system would be much too large.  The 

simplification of considering only those secondary data collocated with the location being estimated avoids this 

problem.  This is no longer global kriging in its pure definition; not all of the data are used to estimate every 

location.  The LHS of the system of equations will vary from location to location as different data are used at each 

location.  Fortunately, the speed advantage of global kriging can be maintained even when parts of the LHS change 

from location to location, provided these changes affect only a small portion of the LHS matrix.   

Watkins (2002) describes a technique for decomposing a matrix by blocks.  Consider a primary variable 

with 
1

n
 
samples and 1

v
N −  secondary data available exhaustively.  The system of equations is composed as 
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shown in Figure 5 where i and j=2,…,Nv-1.  The LHS matrix has size n x n where n = n1 + Nv-1.  The sub-matrix 

shaded in red is the n1 x n1 matrix of primary data-data covariances.  The blue shaded sub-matrices are of size n1 x 

(Nv-1) and (Nv-1) x n1 and contain the covariances between the n1 data and the Nv-1 collocated secondary variables.  

These covariances are often approximated as:  ( ) ( )uuuu −⋅=−
ii

CBC i αα 111  where ( ) ( ) ( )000 11 ii CCB ρ⋅= , ( )01C , 

( )0iC  are the variances of Z1 and Zi, and ( )01iρ  is the linear correlation coefficient of collocated z1 – zi data, 

i=2,…,Nv-1 (Deutsch & Journel, 1998).  The green shaded sub-matrix is comprised of the correlation coefficients 

between the Nv-1 secondary data.  The purple shaded subvector is the vector of primary data-unsampled location 

covariances and the orange shaded subvector is the vector of correlation coefficients between the primary variable 

and the Nv-1 secondary variables.   

To implement the Cholesky decomposition by blocks, let K11 = C11, B = C1j (B
T
 = Ci1), and K̂ = Cij, i,j > 1.  The 

Cholesky Decomposition Theorem states that for positive definite K, K can be decomposed in exactly one way into 

a product K = R
T
R such that R is upper triangular and has all main diagonal entries positive.  R is called the Cholesky 

factor of K (Watkins, 2002).  A block form of the product K = R
T
R is shown in Equation 8.  K11 and R11 are square 

matrices.  K11 is symmetric and positive definite.  Equating the blocks gives equations 9, 10, and 11.   
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R11, S, and R̂  are determined as follows: 
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11

T
R

−
means ( )1

11

T

R
−

.  K11 is the matrix of data-data covariances and remains the same for all locations, 

therefore R11 also remains the same for all locations.  Only B varies from location to location.  S is updated at each 

location and used to determine K%  whose Cholesky decomposition gives R̂ (Watkins, 2002).  The upper triangular 

matrix composed of R11, S, and R̂ is used to solve for the vector of kriging weights, λ.  As Nv is typically small, the 

updating of the R matrix at each location proceeds quickly.   

Collocated cokriging as described is implemented in the global kriging program documented herein.  The 

number of covariates is specified in the parameter file.  For each covariate, the name of the file containing the 

covariate is specified as well as the column number, mean, and variance of the covariate.  The correlations 

between covariates are required as well as the correlations between the covariates and the primary variable(s).  

The name of the file and the column number containing the correlation matrix with these correlations is specified 

in the parameter file.  The correlation matrix has size Nv x Nv.   

The data in Problem Set Four from Deutsch & Journel is used to show an example of global collocated 

cokriging.  There are 29 primary and 2500 secondary data within a 50 x 50m area (Figure 6).  At each of the 

estimation locations, the 29 primary data and the single collocated secondary data are used for estimation.  The 

bulk of the LHS matrix remains the same as it is comprised of the data-data covariances between the 29 data.  The 

final row and column of the LHS matrix is updated at each estimation location.  The block Cholesky method is used 
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to update the decomposition of the LHS matrix to get the weights.  The estimates calculated using this method are 

shown in Figure 7.  They are similar to those in the example provided by Deutsch & Journel (1998).   

Data Error Coordinate 

Different data sources have different errors.  Deutsch et al. (2010) proposed a modification to kriging to account 

for the varying quality of data.  It amounts to adding an additional coordinate to each data.  The magnitude of this 

coordinate corresponds to the error in the data.  This additional coordinate is incorporated into the calculation of 

the distance between two points, whether they are two data locations or a data location and an unsampled 

location.  This additional coordinate is an option in the global kriging program documented herein.  The capability 

exists for each of the primary variables to have a unique error coordinate.  This is specified as a column number; a 

column number less than 1 means no error coordinate is considered.  

String Effect 

The string effect is a well-known phenomenon that occurs when performing kriging with data contiguously aligned 

along finite strings (Deutsch, 1994).  The samples at the end of such strings are seen by the kriging system as being 

less redundant than the other samples in the string.  As such, more weight is given to the samples at the ends of 

the string than is given to the other samples in the string.  Global kriging is not exempt from this effect.  This is 

tested by estimating on a 2D plane with a string of data down the center as shown in Figure 8.  The cumulative 

sum of the kriging weights assigned to each data is shown by the gray line in Figure 8.  The samples at the ends of 

the string received the greatest weight while the samples adjacent to the end samples received the least weight.  

The weight then increases towards the center of the string.   

Expenses: Memory and Time 

Using all of the data to estimate at every location can lead to very large systems of equations.  Computers have 

finite memory capacity for storing the values which comprise these systems.  Double precision floating point 

values require 64 bits of memory.  In one gigabyte of RAM, there are more than 8.5 billion bits, enough memory to 

store more than 100 million double precision floating point values.  Recall that when there are n data, the system 

actually requires n
2
 + 2n entries in the memory (n

2 
for the LHS matrix, n for the weights vector, and n for the RHS 

vector).  Therefore, with one gigabyte of memory, a system with n= 10,000 data can be stored (entries in memory 

=100,020,000).  The memory required increases quadratically with the number of data; n = 20,000 would require 

approximately 4GB of memory.  The relationship between the number of data and RAM required is shown in 

Figure 9.  32 bit systems are only capable of utilizing 4 GB of RAM; utilizing more RAM than this requires a 64 bit 

system.   

The computational time required to evaluate the systems can be prohibitive.  A system with n =10,000 

data requires the calculation of more than 50 million covariances.  That is just to build the system.  The system 

must then be solved.  The Cholesky factorization of a real symmetric positive definite matrix as implemented in the 

global kriging program discussed requires O(n
3
) computations to decompose the LHS matrix.  This is more than 333 

billion computations for n = 10,000.  Once the matrix is decomposed, the resulting triangular matrix is used to 

solve for the weights at each location.  This step requires a further O(n
2
) computations at each location.  There are 

typically many more locations to estimate than there are data.  The computation time for global kriging is 

dominated by the forward and back substitution steps to solve for the weights.  The time increases linearly with 

the number of estimation locations and quadratically with the number of data.   

Time Comparison with Traditional Search-based Kriging 

It is interesting to consider the amount of time required to perform global kriging and to relate this to the time it 

takes to perform traditional search-based kriging.  To compare, a grid with 100,000 cells is estimated using both 
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global and search-based kriging.  Three data sets with 250, 500, and 750 data are used.  The number of data used 

to estimate for search-based kriging is varied from 10 to 240.  The results of this time comparison are shown in 

Figure 10.  This figure compares run time with the number of data used in the search.  Of course, global kriging 

does not use a search and the run time is constant; it depends only on the total number of data and the number of 

estimation locations.  The run time for search-based kriging is highly dependent on the number of data used to 

estimate at each location.  Using many data leads to a large system of equations to be solved at every location 

increasing the run time for the estimation.  The total number of data has a slight impact on the run time for search 

based kriging; estimating takes longer when there are 750 data than when there are 500 data which in turn takes 

longer than where there are 250 data.  The run times of global kriging and search-based kriging are equivalent 

when the search is set to use approximately 10% of the total number of data.  When estimation was performed 

using 250 data, the time to perform global kriging was 8 seconds.  Search-based kriging took approximately 8 

seconds when 25 data were used to estimate.  When 750 data were used, global kriging took 39 seconds.  Search-

based kriging took approximately 39 seconds when 75 data were used.  As a rule-of-thumb, search-based kriging is 

faster when fewer than 10% of the data are used to estimate at each location; when more data than this are used, 

global kriging is faster. 

Conclusions 

Global kriging is effective for producing artifact-free maps.  The lack of artifacts is achieved by using all the data to 

estimate at all locations.  Using all the data to estimate all locations would be extremely computer intensive as the 

large system of equations would have to be solved at every location.  Global kriging capitalizes on the fact that the 

LHS matrix is constant for all estimation locations.  This matrix must therefore only be decomposed once.  The  

decomposed matrix can then be used at all estimation locations to determine the vector of weights used to 

calculate the estimates.  There was previously no capability for performing global cokriging or global collocated 

cokriging.  The software is available for performing these tasks.  Global cokriging is straightforward; and LMC is 

input and all of the data regardless of type are used to estimate at all locations.  Global collocated cokriging is 

easier to implement as the LMC is not required, but some important changes to the algorithm for systems solving 

is required.  The LHS matrix is decomposed by blocks to accommodate the changes to the matrix at each new 

estimation location.  The capability for considering an additional data error coordinate is also incorporated.  The 

main computer resource considerations for global kriging are memory and time.  Memory has a quadratic 

relationship with the number of data; 10,000 data require approximately 1GB of RAM, 20,000 data require 

approximately 4GB of RAM.  The computation time is dominated by the number of estimation locations, the time 

to decompose the LHS matrix is not significant. 
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Figure 1:  System of equations for cokriging with three variables. 

 

 

Figure 2:  Primary and secondary data for the global cokriging example. 
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Figure 3:  Primary variable estimated by global cokriging. 

 

 

Figure 4:  System of equations for the simultaneous estimation of multiple variables. 
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Figure 5:  System of equations for collocated cokriging. 

 

 

Figure 6:  Primary and secondary data for global collocated cokriging example. 

 

Figure 7:  Estimates calculated using global collocated cokriging. 
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Figure 8:  The weights assigned to a string of data by global kriging. 

 

 

 

Figure 9:  RAM requirement vs. number of data for global kriging. 

 

 

 

 

Figure 10:  Run time comparison for global and search-based kriging. 


