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Automatic Report Generation for Geostatistical Modeling Software 

John G. Manchuk and Clayton V. Deutsch 

 

Many parameters are involved in sequential Gaussian simulation and they require tuning to ensure the set of 

realizations reproduce the required statistics.  For large problems, that is, ones with grids having many cells, 

generating realizations to check that the histogram and variogram are reproduced can be very time consuming.  A 

goal of this work is to provide a tool that allows more efficient checking of realizations for tuning parameters.  It is 

possible to evaluate realizations without building them.  The error between the expected covariance of realizations 

and the known covariance matrix defined by the input variogram can be measured.  It is also possible to predict the 

variance of the means of a set of realizations, the expected variance of a set of realizations, and the expected 

variogram reproduction at a variety of lags for a set of realizations, all without the need to generate them.  A 

program that assess these measures and makes suggestions to adjust parameters is developed. 

1. Introduction 

Geostatistics often involves building complex models of geology and geological properties for a variety of 

applications.  The modeling process can be quite time consuming and performing several runs to calibrate input 

parameters may be impractical.  It would be beneficial to know the quality and accuracy of models that will result 

from a set of parameters without having to actually build a full set of realizations.  Consider having to check 

variogram reproduction for a large set of realizations: 1 – a substantial amount of time is spent building the 

realizations, sometime up to eight hours (usually done overnight); 2 – the resulting variogram reproduction may be 

unacceptable and parameters require adjustment, after which another overnight run of model building is done.  

Unacceptable reproduction of the variogram may be in the form of a systematic bias where the experimental 

average over all realizations consistently falls below the input model, or variograms of each realization indicate a 

significant amount of variance at each evaluated lag.  Other checks may include histogram reproduction, variation 

in the mean and variance, recovery of trends, and variation in statistics through some post-processing step. 

 Some recent research from the Centre for Computational Geostatistics has concentrated on selecting 

parameters for geostatistical modeling.  A paper by Guo and Deutsch (2008) looked at the relationships between 

kriging weights to determine an adequate number of data to use in kriging.  The average and variance of the 

kriging variance were observed while increasing the number of conditioning data in one, two and three 

dimensions.  It was concluded that 30, 40, and 60 data were adequate in 1D, 2D and 3D problems respectively.  

Another work by Villalba and Deutsch (2010) looked at predicting the expected fluctuations in the mean of a set of 

realizations due to ergodicity.  It is possible to predict the expected variation in the mean of set of realizations 

given a particular variogram function and domain size.  In the case of a non-ergodic domain, that is, a domain with 

extents less than the correlation length of the random variable, the variation in the mean will be greater than zero 

and one should anticipate a certain amount of variation in histogram reproduction in final models. 

 It is possible to predict several other outcomes for a set of realizations using SGS without generating 

them.  A recent paper by Emery and Peláez (2011) focused on reconstructing the covariance matrix of a realization 

under a variety of different conditions such as unconditional, conditional, with multiple variables, and using 

different random paths and number of data in kriging.  The ability to reconstruct the covariance matrix permits the 

overall accuracy of the realizations to be measured in comparison to the input variogram model.  It is also possible 

to assess the expected variation in the variogram for a set of realizations without generating them. 

 This paper utilizes the methods discussed by Emery (2011) and identifies two other measures that can be 

recovered from the covariance matrix: the expected variation in the mean of realizations as discussed by Villalba 

and Deutsch (2010), and the expected variance for each realization.  Measures to assess the goodness of 

realizations from sequential Gaussian simulation (SGS) are combined into a program that generates a report for 

users.  The results can be used to decide if parameters should be adjusted to improve models without the 

potentially time consuming process of building them. 
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2. Background 

Assessing the quality of a realization from SGS is ultimately dependent on how well the algorithm can reproduce 

the covariance structure of the underlying random variable.  SGS is a widely used algorithm for modeling geological 

properties (Alabert, 1987; Deutsch and Jounel, 1998).  It involves estimating conditional distributions for a set of 

points and is based on a factorization of the joint probability of points and conditioning data defined by Equation 1, 

where � is probability, � is the number of conditioning data and � is the number of points.  Points are typically 

defined as a set of grid cell centers, with � being the number of grid cells.  For Gaussian random functions (RF), 

conditional distributions are given by simple kriging and used to generate Gaussian random values, y�, … , y��	. 
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SGS is typically used to generate a set of realizations that reproduce input distribution functions, heterogeneity, 

and the variogram; however, determining the complete factorization is not always possible. 

For very small problems (� + � ≤ 10,000) when all conditioning data and previously simulated values 

can be included in kriging, the path taken through the grid points in SGS has no effect on results; however, � is 

typically large (� ≥ 10�) for realistic problems and the conditional probabilities are approximated using a set of 

nearest neighbors.  In this case, several parameters including the path have an effect on results.  One approach to 

avoid path-related artifacts in realizations is based on random or quasi-random paths.  For regular grids, the 

multigrid approach is common (Chiles and Delfiner, 1999; Gomez-Hernandez and Cassiraga, 1994).  It is a stratified 

sampling method (Asmussen, 2007) that provides improved reproduction of the variogram over pure random 

sampling, especially when anisotropy and more complex nested variogram models are involved. 

Other parameters that impact the quality of realizations from SGS include: geometry of the domain being 

modeled; search window geometry; the presence of conditioning data; the number of nearest neighbors to use for 

kriging, and; the type of kriging.  Effects of domain geometry relate to the theory of ergodicity: as the dimensions 

of a domain tend to infinity, fluctuations in statistical properties of random fields generated in the domain tend to 

zero (Chiles and Delifiner, 1999).  The size of a domain is measured relative to the variogram involved and is 

direction dependent.  A good overall measure is the average variogram in Equation 2, where � is the domain, |�| 

is the volume of �, � is the variogram, and � and � traverse �, which is typically a three dimensional regular grid.  

In 3D, the integrals over � would be triple integrals, while � and � would have three components. 
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Consider a 1D problem and a variogram with a sill of one and range equal to �.  When � < �, ��� − �� <

1, ∀�� ∈ � and �̅� < 1, indicating the domain is non-ergodic and may result in significant fluctuation in statistics 

such as the mean and variance of the realizations.  When � ≫ �, ��� − �� = 1 for a very large fraction of �� ∈ � 

and �̅� ≅ 1, indicating the domain is ergodic.  For a Gaussian RF, the mean and variance of every realization would 

approximately equal zero and one.  A program called GAMMABAR is available for doing these calculations. 

 Statistical fluctuations due to a non-ergodic domain are not an indication of realization quality; however, 

when implementing algorithms such as SGSIM from GSLIB (Deutsch and Journel, 1998), one may be encouraged to 

try to obtain Gaussian realizations with zero mean and unit variance.  One of the diagnostic outputs from SGSIM is 

the following: 

 

Realization 4: number   =      900 

               mean     =       0.0440 (close to 0.0?) 

               variance =       0.2217 (close to gammabar(V,V)? approx. 1.0) 

 



  Paper 404, CCG Annual Report 13, 2011 (© 2011) 

404-3 

This output was for a square 2D domain 30 units across and an isotropic zero-nugget spherical variogram with 

range 50 units.  One might be encouraged to start manipulating parameters to obtain a mean and variance of zero, 

which would be a futile exercise since the domain is non-ergodic.  Such diagnostic information should be used as 

an indication of ergodicity, not to tune parameters unless the domain is ergodic.  The SGS assessment algorithm 

presented in this work provides measures of the expected variation in the mean of realizations and the expected 

variance of realizations as measures of ergodicity, which are discussed in the next section. 

 When approximating the factorization in Equation 1, search window geometry affects realization quality 

since it defines the data that are found for kriging, and how they are found.  The latter is controlled by the 

anisotropy of the search ellipsoid: by altering the orientation and anisotropy of the search, different sets of nearest 

neighbors can be found.  Ideally, the search should be setup to find the set of data with highest correlation and is 

achieved using a search ellipse that is defined by the anisotropy and orientation of the variogram.  Other numerical 

issues may still have an adverse impact on realization quality, for example, the string effect and screening.  

Screening effects are especially noticeable with the Gaussian variogram model.  Notwithstanding the numerical 

issues, search effects can be related back to the average variogram Equation, which is re-written as Equation 3, 

where !"  is the search domain positioned at each �" ∈ � and the outer integral over � has been replaced by a sum 

over the cells in a grid. 
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When the search ellipse is very small, for example the same size as a grid cell, the average variogram is 

approximately zero because ���" − �� ≅ 0	∀� ∈ !" , assuming the nugget effect is zero.  This indicates realizations 

should have maximum variation in the mean and a variance of zero; however, the opposite effect occurs with SGS 

for numerical reasons.  When the search is very small, for all points in � no data for kriging is found and the 

program assumes the global mean and variance apply.  The result will be an uncorrelated Gaussian random field 

with zero mean and unit variance.  Effects are observed when making the search slightly larger than 1 grid cell, in 

which case at least 1 data is found in the search and the variogram is actually sampled for Equation 3. 

An example using a square domain of 50 units and isotropic zero-nugget spherical variogram with range 

10 is used to demonstrate too small a search.  The average variogram in this case is 0.97, indicating the problem is 

ergodic, that is, realizations should have zero mean and unit variance.  Using a search radius of 1 grid cell, 

diagnostic output from SGSIM is as follows: 

 

Realization 9: number   =     2500 

               mean     =      -0.0572 (close to 0.0?) 

               variance =       0.7028 (close to gammabar(V,V)? approx. 1.0) 

 

In this case, expanding the search is the obvious solution to obtain better realizations. 

 The presence of conditioning data typically has an adverse effect on the quality of realizations, especially 

when coupled with a small search.  Variogram models derived from conditioning data are in almost all cases not an 

exact match to the experimental variogram of the data.  Such noise causes a mismatch between the experimental 

variogram of realizations and the input variogram model.  Positioning of the samples can also cause issues 

especially when the data are oriented in long strings of samples, which is almost always the case for mining and 

petroleum applications.  Search options such as the octant search are available to help mitigate data positioning 

effects. 

 Using a small search for conditional simulation can lead to more variation in variogram reproduction 

because the variogram of conditioning data may not be stationary.  The variogram in local domains defined by the 

search ellipse deviate from the input model and lead to noise.  Measuring the effect of data without generating 

realizations is difficult because covariance is not dependent on data values, while computing experimental 

variograms is.  Only the effects due to the spatial arrangement of conditioning can be measured.  In cases where 

the assumption of second order stationarity may be suspect, one should consider splitting the domain into 

stationary sub-domains, or adopting a locally varying model (Boisvert, Manchuk and Deustch, 2009). 

 The number of nearest neighbors to use for kriging has a similar effect as search ellipsoid geometry.  

Increasing the number of neighbors is similar to increasing the search radii; however, there are subtle differences 

in the performance of each during construction of a realization.  Consider using $ nearest neighbors, an isotropic 
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variogram with range �, a fixed isotropic search radius of % units, % < �, and a multigrid random path.  If the 

coarsest level of the random path involves grid cells that are separated by &, % < & < �, then no data are found 

for kriging at any of the locations in the coarsest level and the kriging variance is overestimated.  Eventually, $ 

points are found and the variance is approximated more accurately.  Such a scenario can lead to poor variogram 

reproduction beyond %.  If a much larger search is specified such as % = 2� while keeping $ the same, more data 

are involved earlier on in the realization and variogram reproduction up to and beyond � is improved.  The 

approximation of the average variogram over the domain is also improved. 

 Lastly, the type of kriging used influences the quality of realizations.  Simple kriging is theoretically the 

correct method since it is proven to reproduce the covariance between two grid cells in a realization.  In practice, 

other methods are employed such as ordinary kriging and collocated cokriging.  With ordinary kriging, the 

covariance is not reproduced exactly, but can be too high or low.  Constraining the kriging weight to a unit sum can 

lead to data close to a location being estimated receiving too low a weight, or data far away receiving too high a 

weight.  Consider an extreme case with one conditioning data and the first grid cell visited while generating a 

realization.  Also let the search radius equal the variogram range, % = �, and the data is � units away from the 

first cell.  Using ordinary kriging, the data receives a weight of one while using simple kriging the weight is zero.  

The ordinary kriging variance in this case is given by Equation 4, where () = 1 is the global variance, * = 1 is the 

kriging weight, and + = −1 is the Lagrange parameter ensuring the sum constraint. 

 

 
2 2

2OKσ σ λ η= − − =  4 

 

The simple kriging variance (,-
) = 1. 

 Collocated cokriging is another case where realization quality is degraded.  Under a Markov screening 

assumption, only the secondary variable at a location being estimated is retained, leading to variance inflation.  

The cause is generally due to accumulation of covariance errors between the primary and secondary data and is 

described by Babak and Deutsch, 2009.  The solution is to use intrinsic collocated cokriging that does not suffer 

from variance inflation.  When the Markov approach is used, a variance reduction parameter can be tuned using 

the SGS assessment algorithm discussed later. 

3. Methodology 

The premise of measuring the quality of realizations from SGS is based on reconstructing the covariance matrix, ./, 

of the realization.  An approach to do so is discussed by Emery and Peláez (2011).  Once ./ is available, it is possible 

to assess a variety of quality indicators including: the overall covariance accuracy; the expected variation in the 

mean of a set of realizations; the expected variance of each realization; and the expected variogram reproduction. 

 Reconstructing the covariance matrix is discussed in terms of unconditional simulation using simple 

kriging, but the approach is similar for other implementations.  The approach described by Emery and Pelaez 

(2011) is essentially LU simulation (Davis, 1987), only backwards: instead of populating the covariance matrix and 

computing the Cholesky factorization to generate realizations, the factorization is generated from a realization to 

compute the covariance matrix.  For sequential simulation, when all previously simulation values are used for each 

subsequent step the two approaches are equal; however, in realistic cases where the search neighborhood and 

nearest neighbors are limited, the covariance matrix from the latter is a degraded version of the former. 

 It is required to generate one realization to rebuild the covariance matrix; however, the result is not 

dependent on simulated values, but only on the path taken and other input parameters.  Multiple realizations do 

not lead to different results, which can save a significant amount of time for parameter tuning.  As a realization 

progresses, a lower triangular matrix, 012, is populated as follows, where ("  is the kriging standard deviation of the 

345 grid node visited in the sequence, *6" , 7 = 1, … , 3 − 1 is the kriging weight assigned to previously simulated 

node 7, and � is the number of grid nodes. 
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A potential issue is that the matrix is � × � and is impractical for realistic problems; however, the quality of SGS 

realizations is not significantly tied to the grid, but is more dependent on the size of the domain covered by the 

grid.  It is possible to obtain a measure of quality on a much coarser grid and this is related to numerical 

approximation of the average variogram.  For example, a cubic domain of 50 units and a spherical variogram of 10 

units converges with increasing � according to Table 1. 

 Once 012 is populated, the covariance matrix is reconstructed using Equation 6, which is the Cholesky 

decomposition of ./.  Computing the inverse of 012 is straightforward and not overly computationally demanding; 

however, the matrix multiplication requires a significant amount of computations and was parallelized to minimize 

execution time. 

 ( )1 1 1 1ˆ ( ) ( )
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Table 1: Convergence of average variogram with increasing 9. 

� 1 8 27 64 125 216 

�̅ 0.001299 0.875081 0.962979 0.98438 0.992002 0.994465 

� 343 512 729 1000 1331 

 �̅ 0.995438 0.995836 0.995981 0.996035 0.996159 

  

Having an estimate of the covariance matrix of the realizations, it is possible to measure the error with the actual 

covariance based on the input variogram model.  Emery and Peláez (2011) use the Frobenius norm defined by 

Equation 7, where . is the true covariance matrix and ‖.‖ is the square root of the sum of the squared entries. 
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An acceptable amount of error is not clear and may be problem dependent.  Ideally, the target error should be 

zero; however, to be practical one should target values between 0 and 5 %. 

 It is also possible to assess the expected variogram and error at each lag from the covariance matrix 

estimate.  Each entry in ./ represent a pair of grid cells that are separated by a lag vector, ;.  All entries in ./ 

corresponding to a specified lag can be summarized by a mean, variance and range indicating the expected 

variation in the variogram from a set of realizations. 

 The variance of the mean of a set of realizations can also be computed based on the expansion of 

Equation 8, where < is the mean of a realization defined by Equation 9 and <̅ is the mean of the realization means 

defined by Equation 10.  �"  is the value of grid cell 3 and = is the number of realizations. 
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For Gaussian random fields, >?<̅@ = 0.  Expanding the first term in Equation 8 and simplifying yields Equation 11, 

which is the average estimated covariance over the domain. 
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In a similar manner, an equation for the expected variance of a set of realizations is obtained starting from 

Equation 12, where (A) is the mean of the realization variances, (). 
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Expanding and simplifying, the expression is given by Equation 13, where B"̅  is the average covariance between grid 

cell 3 and all other grid cells, that is, the average of row 3 of ./, and B̅ is the average covariance equal to Equation 11

. 
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It is not possible to assess the variance of the variance of a set of realizations based solely on the covariance matrix 

as there is fourth order moments involved.  Covariance is a second order moment.  The four features that are 

derived for a set of realizations generated from SGS are used together to measure the expected quality of the 

realizations. 

4. Program and Parameters 

A program called SGSACCURACY was written to perform the assessments suggested in the previous section.  The 

primary purpose is to determine the statistics of a set of realizations without generating them and use the results 

to tune parameters and input statistics.  Parameters are identical to those for SGSIM (Deutsch and Journel, 1998) 

with one additional parameter that is the name of an output file for a report that is generated (Table 2).  A 

convenience to using the same parameter file as SGSIM is that both programs can be executed using the same 

parameter file.  Having the additional line for the report file will not affect SGSIM.  After tweaking parameters 

using SGSACCURACY, the actual set of realizations can be generated using the same parameter file and SGSIM.   

 

Table 2: Parameters for SGSACCURACY. 

Line Parameter 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

data.dat                      -file with data 

1  2  0  3  0  0              -  columns for X,Y,Z,vr,wt,sec.var. 

-10.0       1.0e21            -  trimming limits 

0                             -transform the data (0=no, 1=yes) 

sgsim.trn                     -  file for output trans table 

0                             -  consider ref. dist (0=no, 1=yes) 

histsmth.out                  -  file with ref. dist distribution 

1  2                          -  columns for vr and wt 

0.0    15.0                   -  zmin,zmax(tail extrapolation) 

1       0.0                   -  lower tail option, parameter 

1      15.0                   -  upper tail option, parameter 

1                             -debugging level: 0,1,2,3 

sgsim.dbg                     -file for debugging output 

sgsim.out                     -file for simulation output 

1                             -number of realizations to generate 

30    1.08    2.16            -nx,xmn,xsiz 
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17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

30    1.08    2.16            -ny,ymn,ysiz 

1     0.5    1.0              -nz,zmn,zsiz 

69069                         -random number seed 

0    36                       -min and max original data for sim 

20                            -number of simulated nodes to use 

1                             -assign data to nodes (0=no, 1=yes) 

1     3                       -multiple grid search (0=no, 1=yes),num 

0                             -maximum data per octant (0=not used) 

65.0  65.0  10.0              -maximum search radii (hmax,hmin,vert) 

 0.0   0.0   0.0              -angles for search ellipsoid 

51    51    11                -size of covariance lookup table 

1     0.60   1.0              -ktype: 0=SK,1=OK,2=LVM,3=EXDR,4=COLC 

../data/ydata.dat             -  file with LVM, EXDR, or COLC variable 

4                             -  column for secondary variable 

1    0.0                      -nst, nugget effect 

1    1.0  0.0   0.0   0.0     -it,cc,ang1,ang2,ang3 

         10.0  10.0  10.0     -a_hmax, a_hmin, a_vert 

report.out                    -file for report output 

 

Most parameters will not have an effect on the realization quality measures including normal score transform (Line 

4); number of realizations (Line 15); and the size of the covariance lookup table (Line 27), although larger tables 

generally lead to faster program execution.  Parameters that will effect results include the presence of 

conditioning data (Line 1); the grid specification (Lines 16 – 18); the number of data to use for kriging (Line 20 and 

21); the random path (Line 23) and octant search (Line 24); the search ellipsoid (Line 25 and 26); the kriging type 

(Line 28) and the variogram (Line 31 – 33). 

 The random number seed has an influence on the random path; however, it will only lead to minor 

numerical differences and does not influence the results.  Regardless of the number of realizations entered, the 

accuracy program will only generate one to reconstruct the covariance matrix.  In this initial version, execution 

time limits the problem size, but as mentioned, results are influenced primarily by the domain size, not the 

discretization.  A small test was setup to confirm this statement in 2D and 3D.  The number of grid cells was varied 

for the same domain size of 50 units square and 50 units cubed.  An isotropic spherical variogram with zero 

nugget-effect and range 10 units was used.  Nearest neighbors was set to 50 and the search was as large as the 

domain.  A graph of covariance error as a function of �2/� shows the problem converges to a stable value for a 

discretization of 25 in 2D (625 nodes) and roughly 12 in 3D (1,728 nodes), see Figure 1.  Execution times are shown 

in Figure 2 with the matrix multiplication done in parallel using 4 processors.  For the number of nodes giving 

convergence, the execution times are reasonable ( < 1 minute); however, these results are likely dependent on the 

parameters going into SGSIM.  In cases where more nodes are needed, the execution time quickly becomes 

unreasonable.  Note that the errors are higher in the 3D case.  To bring the error down to the same level as the 2D 

case, excessive previously simulated nodes are needed in kriging (200 to 300 nodes); however, the variogram 

reproduction using less (50 nodes) was good.  This is due to the challenge in reproducing the variogram in a single 

realization versus reproducing the variogram in expected value. 

 Contrary to many algorithms where error decreases as � increases, the opposite is observed for assessing 

error in the estimated covariance matrix.  When � < D, where D is the number of nearest neighbors used, all 

previously simulated nodes are used and the error is zero.  As � increases beyond D, an estimate of the actual 

error is approached.  In any case, the matrix multiplication requires considerable computational time and it is not 

recommended to exceed � = 10000.  This is somewhat of a limitation, although one may consider performing 

checks in 2D slices at various orientations for large 3D problems, or checking smaller 3D sub-domains for any local 

variation.  Running the accuracy check with a coarser grid permits the variogram to be checked at coarser lags as 

well and if higher resolution is needed, a smaller domain must be considered.  This is a point of future work. 

 Output from the program is a report file that contains a review of the critical parameters, an overall 

assessment including covariance error, expected variation in the mean, the expected variance, and expected error 

in variogram reproduction in �, � and E.  If an error seems large, some recommendations are made, and lastly data 

for plotting expected variograms with error bars is output.  A sample report file is shown for a 2D domain of 50 

units square, an exponential variogram with range 30, and using 20 nearest neighbors for kriging (Table 3).  In this 
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case, the non-ergodic domain is identified by a high variance of realization means and low expected variance.  The 

accuracy is good even with a low number of neighbors, which is often the case with the exponential variogram due 

to its excellent screening properties. 

 

Table 3: Sample SGSACCURACY report. 

SEQUENTIAL GAUSSIAN SIMULATION REPORT 

Review of critical parameters: 

   Simulation: UNCONDITIONAL 

   Kriging type: SIMPLE 

   Number of previously simulated nodes:  20 

   Multigrid: YES.  Number of refinements:  3 

   Octant search: NO 

Review of overall assessment 

   Covariance error:   0.019409 

   Expected variance of realization means =   0.146720 

   Expected variance of realizations =   0.852964 

   Variogram reproduction SSE in x =   0.000139 

   Variogram reproduction SSE in y =   0.000175 

Comments and Recommendations 

   The overall accuracy appears to be good 

   The expected variance of the mean is high or 

   the expected variance of the realizations is low: 

      - This is indicative of a domain that is small (non-ergodic) 

        relative to the range of correlation of the variogram. 

        This is not incorrect, but SGSIM will not yield zero mean 

        unit variance realizations 

Variogram Reproduction Assessment 

X Direction 

Lag  Distance  True_Variogram  Expected_Variogram  Variance  Minimum  Maximum 

    0   0.000      0.000000         0.000315     0.161E-06  -.00012  0.00220 

    1   2.500      0.221199         0.221502     0.158E-06  0.22104  0.22331 

    2   5.000      0.393469         0.393381     0.639E-06  0.38749  0.39592 

    3   7.500      0.527633         0.525882     0.631E-05  0.51468  0.53051 

    4  10.000      0.632121         0.628610     0.139E-04  0.61589  0.63575 

    5  12.500      0.713495         0.708782     0.176E-04  0.69444  0.71702 

 

An example of an expected variogram with error bars is shown in Figure 3.  In this example, a spherical variogram 

with range 30 was used in a domain 50 units square.  The number of neighbors was set to 10 to cause noticeable 

errors, while the search was set to the domain so long range variogram reproduction should be maintained.  Errors 

are low near the origin, but grow as the range extends beyond the 10 nearest neighbors.  The expected variogram 

falls below the input model and this is caused by a non-ergodic domain.  If the search radius is constrained to a 

small value, for example 10 units, variogram reproduction is poor even with 50 neighbors (Figure 4). 

6. Conclusions and Future Work 

A utility was developed to permit the assessment of realizations from SGS without having to generate them.  It is 

based on reconstructing the covariance matrix of a grid based on parameters such as nearest neighbors and 

random path.  It allows users to tune parameters for SGS prior to building realizations so that their quality is known 

ahead of time.  Unfortunately, the algorithm is very computationally demanding and this limits the grid dimensions 

that can be evaluated.  It is possible to obtain an understanding of how SGS will perform for a given set of 

parameters using a coarser grid.  An area for future research is to develop approximations to the measures of 

realization quality that do not require computing the � × � covariance matrix.  Another point of future work is to 

make it possible for the program to parse other parameter files such as for kriging or ultimate SGSIM. 
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Figure 1: Covariance error as a function of 9F/G, where G is the dimensionality. 

 
Figure 2: Execution time using 4 processors for computing the covariance error as a function of 9F/G, where G is the 

dimensionality. 
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Figures 

 

 
Figure 3: Example plot of expected variogram from a set of realizations compared to the input model.  Error bars and +/- 1 

standard deviation are shown for the expected variogram. 

 
Figure 4: Example plot of expected variogram from a set of realizations compared to the input model.  Error bars and +/- 1 

standard deviation are shown for the expected variogram. 
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