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Numerical Integration of Bivariate Gaussian Distribution 
 

S. H. Derakhshan and C. V. Deutsch 

 

The bivariate normal distribution arises in many geostatistical applications as most geostatistical techniques rely on 

two-point statistics. This paper addresses an algorithm to calculate the bivariate normal probabilities (i.e. 

cumulative distribution function for different cutoffs for both variables). Various algorithms and approximations 

have been proposed to calculate the bivariate normal probabilities. In this paper, Simpson’s 1/3 rule is used to 

calculate the bivariate normal probabilities. The efficiency and accuracy of the method are validated. A FORTRAN 

subroutine called getbnp is written for this purpose. 

 

1. Introduction 

The goal in this paper is to numerically calculate the probability that a normal random variable ��with 

mean zero and variance one is greater than	��, and another normal random variable ��with mean zero and 

variance one is greater than	�� , while the correlation between ��and	�� is �. This probability is related to standard 

bivariate normal cumulative distribution function. The two cutoffs of �� 	 ��and	�� 	 ��  divide the whole 2D 

Cartesian space into four regions	
��, 
��, 
��and	
��: 

 

 
Figure 1 standard bivariate normal distribution between 
�and	
�; the two cutoffs of �� 	 ��and	�� 	 �� divide the 

Cartesian space into four regions 

The probability definitions of 
��, 
��, 
��and	
�� are as below: 


�� 	 ������� � ��, �� � ��� 

�� 	 ������� � ��, �� � ��� 

�� 	 ������� � ��, �� � ��� 

�� 	 ������� � ��, �� � ��� 


�� and 
��	have specific meaning, 
�� is the bivariate normal cumulative distribution function and 
��	is the 

survival function.  
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Another ways of showing 
�� and 
�� as functions of �� , �� and �	are: 


�� = ���� , ��; �� 


�� = ���� , ��; �� 

In literature the focus is more on 
��. There are different formulas, tables and algorithms in literature to calculate 


��(e.g. Abramowitz et al. 1965 and Balakrishnan et al. 2009). Generally there is no closed form analytical formula 

for	
�� but there are some approximations and numerical tables to calculate	����, ��; �� in the literatures. For 

analytical and approximation purposes and also tabulating standard values for ����, ��; �� in the literature, one 

can use below identity (Abramowitz et al. 1965, Balakrishnan et al. 2009 and Lin 1995): 


�� = ���� , ��; �� = �  ��, 0; �"#,"$% + �  �� , 0; �"$,"#% −
1
2 *"#,"$ 

The right hand side still contains the � function but the second input parameter for that is equal to zero. The new 

parameters in above equation are defined as below: 

�"#,"$ = +,-.���� ∙ ���� − ���
0��� − 2����� + ��� 

�"$,"# = +,-.���� ∙ ���� − ���
0��� − 2����� + ��� 

*"#,"$ = 10					; 			+,-.���� ∙ +,-.���� = 1
1					; 			�2ℎ4�5,+4																							  

 

+,-.���� = 1+1					; 			�� ≥ 0
−1					; 			�� < 0									 ; 						+,-.���� = 1+1					; 			�� ≥ 0

−1					; 			�� < 0 

�"#,"$  and �"$,"#are newly calculated correlation coefficients and are functions of ��, ��  and �. By using the 

relations in methodology part of this paper, other bivariate normal probabilities (
��, 
��and	
��) can also be 

calculated. The above identity helps to convert the trivariate function of ����, ��; �� to three bivariate functions 

of	�  ��, 0; �"#,"$%, �  �� , 0; �"$,"#% and *"#,"$. Usually the values for �  �� , 0; �"#,"$% and �  �� , 0; �"$,"#% are 

tabulated in handbooks and literature and by using above identity ����, ��; �� is calculated. 

A subroutine called getbnp is written to get	
, 8 and � and calculate 
��, 
��, 
��and	
��. It uses 

Simpson’s 1/3 rule to calculate the bivariate normal integrals. 

 

2. Methodology 

The four bivariate normal probabilities are related to each other. The marginal normal distributions can 

help to assess this relationship. The following relations are obtained (see Figure 1): 
• The summation of 
�� and 
�� must be 
, that is 
�� + 
�� = 
 

• The summation of 
�� and 
�� must be 8, that is 
�� + 
�� = 8 

• All of the four bivariate normal probabilities must sum to 1, that is 
�� + 
�� + 
�� + 
�� = 1 

Therefore, by knowing one of the probabilities (e.g. 
��), the three others can be calculated: 

 

   
�� 
�� 
�� 
�� 

1 
��	is known 
�� = 9 9 -:��, ��; �;<��<��
"#

=>

"$
=>

 
�� 
 − 
�� 8 − 
�� 1 − 
 − 8 + 
�� 

2 
��	is known 
�� = 9 9 -:��, ��; �;<��<��
"#

=>

?>

"$
 
 − 
�� 
�� 8 − 
 + 
�� 1 − 8 − 
�� 

3 
��	is known 
�� = 9 9 -:��, ��; �;<��<��
?>

"#

"$
=>

 8 − 
�� 
 − 8 + 
�� 
�� 1 − 
 − 
�� 

4 
��	is known 
�� = 9 9 -:��, ��; �;<��<��
?>

"#

?>

"$
 
 + 8 − 1 + 
�� 1 − 8 − 
�� 1 − 
 − 
�� 
�� 
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Where -:��, ��; �;	is the standard bivariate normal probability density function and formulated as: 

-:��, ��; �; = 1
2@01 − �� ∙ 4

=�"AB=�C"A"B?"BB�
�:�=CB;  


 and 8 are the univariate normal probabilities and are related to ��and ��by: 


 = ����� = 1
√2@9 4="AB� <��

"#

=>
			⇔ 		 �� = �=�:
; 

8 = ����� = 1
√2@9 4="BB� <��

"$

=>
			⇔ 		 �� = �=�:8; 

�:∙; is the standard univariate normal cumulative distribution function and �=�:∙; is its inverse.  

Special cases 

Depending on the values of	
,	8	and � the above equations can be simplified and easy to calculate: 

1. If there is no correlation between ��and	��then � = 0. In this case the integrals are separable. Since the 

two variables are independent, the bivariate normal probabilities are obtained using the multiplication 

rule for probability: 


�� = 
 ∙ 8 ;	
�� = 
 ∙ :1 − 8;;	
�� = :1 − 
; ∙ 8	and	
�� = :1 − 
; ∙ :1 − 8; 

2. If the correlation between ��and	��	is	� = −1, then two different cases might happen: 

a. The summation of 
 and 8 is greater than or equal to 1, that is 
 + 8 ≥ 1. In this case the 

bivariate normal probabilities are: 


�� = 
 + 8 − 1 ;	
�� = 1 − 8;	
�� = 1 − 
	and	
�� = 0 

b. The summation of 
 and 8 is less than 1, that is 
 + 8 < 1. In this case the bivariate normal 

probabilities are: 


�� = 0 ;	
�� = 
;	
�� = 8	and	
�� = 1 − 
 − 8 

3. If the correlation between ��and	��	is	� = +1, then two different cases might happen: 

a. 
 is greater than or equal to 8, that is 
 ≥ 8. In this case the bivariate normal probabilities are: 


�� = 8 ;	
�� = 
 − 8	;	
�� = 0 and	
�� = 1 − 
 

b. 
 is less than 8, that is 
 < 8. In this case the bivariate normal probabilities are: 


�� = 
 ;	
�� = 0;	
�� = 8 − 
	 and	
�� = 1 − 8 

4. If 
 and 8 are the same and equal to 0.5, that is 
 = 8 = 0.5. The double integral for the bivariate normal 

probabilities has closed form analytical solution: 


�� = 
�� = �
H +

IJKLMN:C;
�O 				and				
�� = 
�� = IJKPQR:C;

�O  

Simpson’s 1/3 rule 

Simpson’s 1/3 rule is used to calculate the bivariate normal integrals. The interval of integration in 

Simpson’s 1/3 rule is divided into an even number of equal intervals (or an odd number of nodes). Each node has a 

weight. The integral by Simpson’s rule is equal to the weighted summation (Simpson’s 1/3 weights) of the values of 

function at each node multiplied by one third of the subinterval length. For one dimensional integral, the 

integration starts at the first two equal intervals; the two equal intervals are constructed by three points of start, 

middle and end of the two intervals together. A polynomial of degree two can be fitted such that all of these three 

points are honored. In other words the interested function (integrand) is approximated by polynomial of degree 

two in these two equal intervals. If this approximation is done for the rest of subsequent intervals then below 

formulas are obtained using Simpson’s 1/3 rule (for two dimensional integrals) for	
��. 

For calculating 
�� first infinity should be approximated by a value. In Gaussian units usually -5.0 and +5.0 

are used for minus and plus infinity. For better approximation of 
��, minus and plus infinity in Gaussian units are 

set to -10.0 and +10.0 in this paper. It will be shown that with this assumption for infinity, the numerical 

integration is still fast. Simpson’s 1/3 rule is applied for both variables, ��, �� therefore the two dimensional 

Simpson’s 1/3 rule can be condensed in a double summation by introducing weights for each node: 
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�� = 9 9 -:��, ��; �;<��<��
?>

"#

?>

"$
≅ 9 9 -:��, ��;<��<��

TBUVA

TA

WBXVA

WA
≅ ℎ�

9 ∙ Z Z 2[\] ∙ -�^M , �_; ��
�N?�

M`�

�a?�

_`�
 

-:��, ��; �; = 1
2@01 − �� ∙ 4

=�"AB=�C"A"B?"BB�
�:�=CB;  

 

. = 1 + ,.2 bc − ��
ℎ d − ,.2 e12 + 1

2 ,.2 b
c − ��

ℎ df 			⇒ 			 ^M = �� + :, − 1; ∙ ℎ								h��			, = 1, … ,2. + 1 

 

j = 1 + ,.2 bc − ��
ℎ d − ,.2 e12 + 1

2 ,.2 b
c − ��

ℎ df 			⇒ 			 �_ = �� + :k − 1; ∙ ℎ								h��			k = 1, … ,2j + 1			 
 

5M_ = 4 − j�<:,, 2; − j�<:k, 2; − *M,� − *M,�N?� − *_,� − *_,�a?� 

 

*M,_ = m1								,h		, = k					
0								�2ℎ4�5,+4 

Note that ℎ is the length of the subinterval,  c is a big number in Gaussian space that represents plus 

infinity (in this paper c is set to 10.0) and ao and bqare nodes for integration. j and . are chosen in such a way 

that ^�N?� and ��a?� are greater than A and there exists an odd number of nodes for both variables. A :2n + 1; ×
:2j + 1; matrix can be used to show the weights,	woq, for each node of the integration (each array in the matrix is 

considered as one node): 

v = w5M_ ; , = 1, … ,2. + 1, k = 1,… ,2j + 1x =

y
zz
zz
zz
{1 4 2 4 ⋯ 2 4 1
4 16 8 16 ⋯ 8 16 4
2 8 4 8 ⋯ 4 8 2
4 16 8 16 ⋯ 8 16 4
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
2 8 4 8 ⋯ 4 8 2
4 16 8 16 ⋯ 8 16 4
1 4 2 4 ⋯ 2 4 1�

��
��
��
�

:�N?�;×:�a?�;

 

Once 
��is calculated, the other four bivariate normal probabilities are obtained using the relations previously 

presented.  

 

3. Implementation 

To calculate the integral numerically using Simpson’s rule and approximate the four bivariate normal 

probabilities, five parameters should be specified in the subroutine 

getbnp(rho,p,q,h,lgaus,p00,p01,p10,p11,ierr). They are as follows: 

• rho is the correlation coefficient between the two normal variables,	�. It is a real number between -1 

and 1. 

• p is the univariate normal probability for the first variable. In other words it is the area under the 

univariate normal probability density function from minus infinity to ��. 

• q is the univariate normal probability for the second variable. In other words it is the area under the 

univariate normal probability density function from minus infinity to ��. 

• h is the interval length for Simpson’s 1/3 rule numerical integration. Small h results in more precise 

calculation for the integral but increases CPU time. Choosing 0.01 for h is reasonable as it gives a precise 

answer for integral calculation within a small amount of CPU time.  

• lgauss is a big number in Gaussian units that represents plus infinity. In the calculation for this section 

it is chosen to be equal to 10.0. 

• p00,p01,p10 and p11 are the output of the subroutine and are equal to bivariate normal 

probabilities for the four regions under the bivariate normal curve (see Figure 1). 
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• ierr is the indicator for error situation. If ierr=1 then it means that p and q are out of range. If 

ierr=0 then it means that p and q are in range. 

The results of the algorithm are validated for different sets of 
,	8	and �. The interval length for 

integration is 0.01. The tables below show a few approximated values compared to exact values up to 4 decimal 

places (Based on Lin, J. 1995, the exact values are provided up to 4 decimal places).  

 


 �� � Exact ����, 0; �� up to 4 decimal places Calculated ����, 0; �� up to 4 decimal places 

0.5793 0.2 -0.5 0.1289 0.1289 

0.6915 0.5 -0.6 0.0657 0.0657 

0.7881 0.8 -0.7 0.0233 0.0233 

0.8643 1.1 -0.8 0.0037 0.0037 

 

The computational efficiency of the algorithm is also checked. Four new parameters are used to show the 

computational efficiency. They are as below: 

1. Number of bivariate bins (nodes) for Simpson’s 1/3 rule integration, �WMNR: 

�WMNR = :2. + 1; × :2j + 1; 

j and . are calculated using the formulas in previous section. 

2. Number of similar digits (from left) of the calculated integration result with respect to exact value for 

integration (converged value), �R_�M�. For example if the calculated integration result is equal to 

0.065145685 and the exact value is 0.065135585 then �R_�M�is equal to 4. 

3. Error of the integration result with respect to exact value for integration (converged value); 

�����	:%; = ��^����^24<	�4+��2 − ��.�4�-4<	�4+��2
��.�4�-4<	�4+��2 � × 100 

Simpson’s 1/3 rule finally converges to the exact value provided the interval length for integration is 

sufficiently small. 

4. CPU time (in seconds,	2P��) that elapsed for executing the subroutine, getbnp, for a specific 
,	8	,	� and 

ℎ. 

The length of the interval,	ℎ, is varied from 0.0001	to 1.0 with increment of 0.0001. Infinity is represented by 10.0 

in Gaussian units. 
,	8	and � are equal to 0.70, 0.55 and - 0.5 respectively. The converged value up to 27 decimal 

places with interval length of 0.0001 for integration is calculated as 0.065355531871318817138671875. The 

integral result for other interval length is compared to this converged value. A 3.19 GHz processor with 3.0 GB of 

RAM was used to calculate the CPU time. Figure 2 shows the computational efficiency of the algorithm. As the 

number of bivariate bins increases, the number of similar digits and CPU time increases but error decreases. Figure 

2 does not show the computational efficiency for bivariate bins with orders of magnitudes between 6 and 10 

(10� < �WMNR < 10��). Figure 3 is the same as Figure 2 but for large values of �WMNR. The relationship between 

�WMNR and CPU time for large �WMNR is: 

2P�� ≅ �WMNR × 10=�.��					h��					10� < �WMNR < 10�� 

The first value that results in zero error is at	ℎ = 0.0332,  �WMNR = 85813. The CPU time for this point is 0.0313 

seconds. The table below shows the results for some specific	�WMNR: 

 


 �� 8 �� � c ℎ �WMNR �R_�M� ����� (%) 2P�� (+4��.<+) 

0.7 0.5244 0.55 0.1257 -0.5 10.0 1.0000 121 2 5.0027 0.0000 

0.7 0.5244 0.55 0.1257 -0.5 10.0 0.1000 9797 6 0.0005 0.0156 

0.7 0.5244 0.55 0.1257 -0.5 10.0 0.0100 938561 27 0.0000 0.0463 

0.7 0.5244 0.55 0.1257 -0.5 10.0 0.0010 93604329 27 0.0000 40.0938 

0.7 0.5244 0.55 0.1257 -0.5 10.0 0.0001 9356779965 27 0.0000 3999.8906 
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Figure 2 the horizontal axis is the number of bivariate bins (nodes) for integration, �����; there are three vertical 

axes, (1) number of similar digits from left, (2) error and (3) CPU time, they are distinguished by colors of green, 

red and blue respectively. CPU time axis is in arithmetic scale (not log scale) 

 
Figure 3 the computational efficiency of the Simpson’s 1/3 rule for calculating the bivariate normal integrals; the 

focus in this figure is more on large ����� and also the linear relationship between ����� and CPU time in log-log. 

4. Conclusion 

Simpson’s 1/3 rule is used to calculate the bivariate normal probabilities. With knowing the two univariate 

normal probabilities and the correlation coefficient between the two variables, the four bivariate normal 

probabilities are obtained. Subroutine getbnp is written in FORTRAN to get	
, 8 and � and calculate 


��, 
��, 
��and	
��, the four bivariate normal probabilities. As future work; a fast algorithm to calculate the 

numerical integration of multivariate Gaussian distribution at different cut-offs can be considered.  
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