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Multivariate Standard Normal Transform: Advances and Case Studies 
 

Ryan M. Barnett and Clayton V. Deutsch 
 
The Multivariate Standard Normal Transformation (MSNT) was recently proposed to transform arbitrary 
multivariate data to a standard normal distribution. The MSNT was constructed as an optimization 
problem, where complex multivariate data are mapped directly to a multivariate Gaussian distribution in a 
manner that minimized changes to the original multivariate structure. While the original idea is carried 
forward, conceptual and algorithmic details have been significantly altered. The MSNT concept will first be 
redeveloped, followed by an overview of its implementation. Case studies are presented to demonstrate 
the MSNT on data of various forms. While promising results are shown, work remains for the MSNT to be 
applicable on data sets composed of many observations. 
 
Introduction 
Out of practical necessity, the multivariate Gaussian distribution is commonly adopted within geostatistics 
for modeling spatially correlated random variables. As geologic variables are often non-Gaussian in 
nature, a wide variety of techniques [2] are available to transform them to a multiGaussian form, with 
their associated back-transforms to reintroduce the original distributions. The well-known and widely 
applied normal score transformation [2,4] will guarantee univariate Gaussianity, however, multivariate 
Gaussianity is rarely achieved by this transform. The stepwise conditional transform [12] is the most 
commonly used transform which attempts to make the data multivariate normal. While very useful when 
working with 2 or 3 variables and over 1000 data, the binning nature of stepwise prevents its natural 
application on larger dimensional datasets. Other less common transforms exist that will not be 
enumerated [1,2,13], though they may be summarized as having similar deficiencies related to 
dimensional restrictions. A very large problem which remains in the geostatistical field is a transform that: 
(i) transforms geologic data to be perfectly multivariate Gaussian, (ii) fully captures on the forward 
transform (and reintroduces on the back-transform) all of the original univariate and multivariate 
complexities, and (iii) is applicable to any realistic dimension of geologic data (2-100 variables). 

Originally proposed in a paper of the same title, the Multivariate Standard Normal 
Transformation (MSNT) [4] has the potential to possess all of the ideal multivariate Gaussian transform 
qualities that are outlined above. At the time of its original release, the MSNT was in its infancy of 
development and required further research into implementation details. The following paper will present 
the latest version of the MSNT. To avoid comparing the numerous changes that have been made from its 
original form, the MSNT concept will be redeveloped before outlining the major points of its current 
implementation. This will include periodic discussion on alternative approaches that could be considered 
at various steps of the algorithm, which may have been rejected based on prior testing, or represent 
future research directions. A 2-D synthetic dataset is used for demonstration during this algorithm outline 
due to its visual simplicity. The MSNT is then applied to a 3-D Nickel Laterite dataset of greater non-linear 
and stoichiometric complexity as a final realistic geometallurgical case study.  
 
MSNT Concept, Transform Distortion, and Visualization 
As the MSNT is composed of several steps, it may be easy to lose sight of the overarching concept when 
proceeding through the details that are outlined in the next section. To avoid this, the MSNT concept, 
objectives, and end results are immediately presented in this section. Additionally, methods that will be 
used later for judging the transform’s results will be discussed.  

The MSNT transforms a complex k-variate distribution of N observations, to a k-variate Gaussian 
distribution of N observations. This is achieved by directly mapping observations between the two 
distributions using a single index vector M of length N. The concept may be more easily understood 
according to the schematic illustration in Figure 1, where arrows represent the indexed mapping. 
Although this is a remarkably simple concept, the question arises of what criteria should be sought after 
when attempting to map between the distributions? What defines a good mapping? 
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It is proposed, that a good mapping will minimize the distortion of the original data configuration 
when transforming the data to Gaussian space. Distortion is defined here based on the relative 
configuration of the data. Neighboring observations in original space should remain near to one another 
in transformed space. Likewise, widely separated observations in original space should remain distant in 
transformed space. According to this definition, the absolute location or magnitude of a data observation 
in original and transformed space is not considered of primary importance. Rather, distortion is a function 
of changes that occur to the distances between observations. A good Gaussian mapping transform should 
minimize these changes. With this in mind, the MSNT is posed as an optimization problem, with an 
objective function that seeks to minimize the changes that occur to the distances between observations in 
original and transformed space.  

With the success of a Gaussian mapping now defined based on the relative shift that occurs between 
observations, a method will be required for visualizing the results and judging the success of the 
transform. As the mapping arrows in Figure 1 already begin to create clutter, it is easy to imagine that 
they will only add confusion when plotting realistic datasets of >100 observations. Perhaps the most 
effective method for judging results, is through coloring the transformed observations according to their 
associated values in original space. To illustrate this idea, both distributions and the mapping arrows in 
Figure 1 are colored according to the Z1 value. While it was specified above that maintaining the absolute 
magnitude of an observation in original space is not critical to the success of the transform, it remains an 
effective way for judging how the position of observations have shifted relative to one another. Ideally, 
we wish to see a continuous gradient of color in transformed space, since this indicates that the mapped 
observations originated from similar locations as measured in one dimension. Coloring according to 
multiple dimensions may then take place. Note that as the dimension coloring in the transformed 
distribution of Figure 1 is quite chaotic, this would represent a poor mapping.  

As will be demonstrated, distortion will also manifest itself in the variograms of the transformed 
variables. While the variograms of transformed variables are expected to change relative to their original 
form, a high degree of distortion will destroy any meaningful spatial structure. Throughout the remainder 
of this paper, the success of the MSNT will be based on this dimension coloring concept and inspection of 
the transformed variograms. 

  
MSNT Steps 
The following section will outline the major steps of the MSNT, using a 2-D synthetic dataset for 
demonstration. This data is displayed in Figure 2, where complex multivariate features such as 
heteroscedsticity and mild non-linearity are observed between the variables. Note also that the two 
variables possess varying spatial structure according to their experimental variograms.  
 
Step 1: Normal score transform the data to obtain the Original Distribution 
As subsequent mapping steps will revolve around the euclidean distance between observations, the 
MSNT will be very sensitive to drastically different units or outlier values. The widely-applied normal score 
transform [2,5] standardizes variables to the same units1 and removes outlier values to resolve both 
issues. The normal score transform is given by Equation 1, where quantile matching is performed 
between the empirical data CDF, F, and the standard normal CDF, G. This step is demonstrated on the 2-D 
synthetic data in Figure 3, where marginal histograms are observed in the transformed y data. While 
potentially confusing, it is y (rather than z) that has been (and will be) referred to as the original 
distribution. This is because y will be the origin of the subsequent mapping.  
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Step 2: Generate the Transformed Distribution using LHSMDU 
With the origin of the MSNT mapping in a suitable form according to Equation 2, a multivariate Gaussian 
distribution g must now be generated as the destination of the mapping. This transformed distribution g 
will be N observations and k dimensions in accordance with the original y distribution. This step is 

                                                                 
1 In addition, these units attractively coincide with the units of the transformed distribution g. 
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represented by Equation 2, where F(z) are randomly generated CDF values, used to attain Gaussian 
values according to the empirical standard normal CDF, G.   
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Monte Carlo simulation (MCS) [6] could be considered for generating the random F(z) values, but as 
demonstrated in Figure 4, it produces unsatisfactory multivariate Gaussian distributions due to non-
uniform sampling. Latin hypercube sampling with multidimensional uniformity (LHSMDU) [6] is adopted 
as a result to insure multivariate uniformity of the F(z) values. Uncorrelated and correlated multivariate 
Gaussian distributions generated by the LHSMDU are displayed in Figure 4. The correlated distribution is 
constructed according to the correlation of the 2-D y data from Figure 3, and will be treated as the g 
transformed distribution for the synthetic case study in subsequent steps.  An even higher degree of 
Gaussianity could potentially be achieved using methods such as Gauss-Hermite quadratures [9], which 
may be applied in the future. 

While it is clear that g should be as multiGaussian as possible, the decision on whether this 
transformed distribution should be correlated or not may depend on the subsequent modeling 
framework. For example, if independent simulation is to be executed on the transformed variables, then 
an uncorrelated distribution may2 be generated. Conversely, a correlated distribution will be required for 
dependent simulation methods such as co-simulation.  

It is worth noting that this decision may have considerable implications on the transform 
distortion of the ultimate mapping. Particularly when the original distribution is highly correlated3, it 
makes intuitive sense that distortion should be more easily minimized when mapping distributions of the 
same correlation. Identically correlated distributions are decidedly more similar in form than correlated 
and uncorrelated distributions.   
 
Step 3: Initial Mapping through Dimension Reduction 
The original marginally normal distribution y and the transformed multivariate normal distribution g have 
been generated according to the steps above. The initial mapping index vector M must now be 
established between them. It is this mapping vector that will be heuristically optimized in the next step 
and section. A good initial mapping will be necessary for the subsequent optimization to properly 
converge.  

This initial mapping is a dimension reduction problem, as observations of the multidimensional 
original and transformed distributions must be described by a single measurement that allows for their 
alignment. Ideally, this single measurement will describe the greatest possible amount of variability in the 
multivariate data.  Once the distributions are measured along this single dimension, they may be sorted 
and have their initial mapping established accordingly.  

This dimension reduction is currently achieved using the classic technique of principal 
component analysis (PCA) [2,8,10]4, which will yield a vector that describes the greatest linear variability 
in the multivariate data. The first principal component vector p is the first row of the sorted eigenvector 

                                                                 
2 Even if independent simulation is the eventual goal, a correlated Gaussian mapping may be considered 
since decorrelation methods such as PCA [2,8,10] or MAF [2,17] could be subsequently applied to the 
transformed variables. While not appropriate for complex distributions [2], these linear decorrelation 
methods are very effectively and appropriately applied to correlated multiGaussian data.  
3 Or in the case of greater than 2 dimensions, a highly non-orthogonal correlation matrix. 
4 As the original distribution may be non-linear, a potential improvement with this step could involve the 
use of non-linear dimension reduction methods.  Many such techniques have been tested, including non-
linear PCA with auto-associative neural networks [16], kernel PCA [15], and variance unfolding [11].  As 
compared to linear PCA, results with these non-linear schemes represented significantly worse to very 
marginal improvements in the resultant mapping. They were consequently not adopted, though many 
additional techniques remain to be tested. 
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matrix P, which is found through the spectral decomposition of the covariance matrix TC PDP= . Here, 
C is the covariance matrix of the original distribution y, and D is the associated diagonal eigenvalue 
matrix. This is demonstrated on the synthetic data in Figure 5, where the first and second principal 
component vectors are displayed. It is the larger of these two vectors that is the first principal component 
vector p. Both the original distribution y and transformed distribution g may be rotated and described 
along this vector p according to their respective linear transformations in Equation 3.  

,x py x pg= =                                                                      (3) 
Both multivariate distributions are now reduced to a single variable x that describes the greatest 

amount of linear variability in the multivariate distribution y. Finally, rank order the y and g distributions 
according to their associated x values to create the initial mapping vector M.  

 
Step 4: Simulated Annealing to Minimize Transform Distortion 
The above steps have respectively formed the original distribution y, the transformed distribution g, and 
an initial mapping index vector M that connects them. Recall that the MSNT seeks to reduce transform 
distortion, by minimizing the changes that occur to the euclidean5 distances between observations in 
original and transformed space. With this in mind, the MSNT objective function is given by Equation 4. 

Given a specified mapping index vector M, ( )o i jd   is the distance between the ith and jth observations in 

original space, and ( )t i jd is distance between those same observations in transformed space. The decision 

to make this a quadratic function was based on testing a range of other powers. 
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Unfortunately, Equation 4 may not be solved using global linear6 or convex solvers. Instead, it is 
accomplished through randomly perturbing the mapping index vector M in a pairwise fashion using a 
simulated annealing framework [3]. Ideally, the second summation in Equation 4 will proceed to the full N 
number of observations, so that the distances between all observations are considered. While it is 
important that neighboring observations remain close together, it is equally important that distant 
observations remain far apart.  

As convergence times when considering all observations in this manner can grow prohibitively 
long for larger datasets (Figure 6) , N may be modified on this second summation to be based on only the 
nearest n number of nearest neighbours to the ith observation in original space. This is represented by the 
schematic in Figure 7, where a mapping is made based on the distance between an arbitrary observation 
and its four nearest neighbours. This indirectly achieves a similar end goal, though inferior results were 
observed and it is only recommended when using the full N number of observations is not 
computationally feasible.   
 Following this optimization, the resultant index vector M may (or may not) be considered an 
acceptable Gaussian mapping transform. To inspect the MSNT results, we return to the concepts of 
dimension coloring and variogram structure for inferring transform distortion. Dimension color plots and 
experimental variograms are displayed in Figure 8 for the 2-D data. The initial PCA mapping is also 
displayed in this figure for reference of what would be considered unacceptable distortion. Variograms of 
the normal score y data are provided as a reference of the spatial structure prior to mapping. A large 
improvement is seen in the distortion of the optimized mapping when compared to the initial PCA 

                                                                 
5 Other distance measures may be considered for highly non-linear data, such as shortest graph distances 
[7] where graph connections are made between neighbouring observations.  
6 If this mapping is modified to be accomplished in multiple stages, it can become a linear transportation 
optimization problem that is globally solved using the Hungarian algorithm [14]. Inferior results were 
found so far with this approach, however, due to the necessity of multiple stages. 
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mapping. A much smoother gradient of color is observed in the dimension coloring plot, as well as 
variograms of greater continuity. This illustrates that when the distortion is not minimized, less spatial 
continuity is preserved. The optimized mapping vector M is deemed to be an acceptable transform based 
on these plots. 
 
Backward Transform  
Following any arbitrary modeling methods in Gaussian space, a simulated realization will need to be back-
transformed to the original data units. This process for the MSNT will be highly analogous to the 
univariate normal score transform. Like the normal score transform, the MSNT records the original and 
transformed value for each observation during the forward transform process. This recorded file simply 
needs to be referenced for mapping Gaussian values back to original space.  

Since the simulated grid nodes will not possess identical values to the mapped observations, an 
interpolation method is used to infer their location in original space based on their proximity to the 
nearest mapped observations in Gaussian space. This concept is represented by Equation 5 and displayed 
schematically in Figure 9, where the ith simulated location is back-transformed based on its euclidean 
distance in transformed space ( )t i jd  , to the jth mapped observation. This amounts to inverse distance 

weighting, where ( )t i jd will determine the  weight attributed to the original values of the jth mapped 
observation on  the yi  estimate.  Any number of nearest mapped observations could be used for this 
interpolation, but it is advocated that this should be chosen based on the k number of multivariate 
dimensions, where k+1 number of observations is optimal. Using less than this does not adequately 
constrain the multivariate interpolation, but increasing beyond k+1 will begin to converge the back-
transformed results towards the mean. 
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Returning to the MSNT transformed synthetic data from Figure 8, MAF [17] will first be used to 
decorrelate the distribution before independently simulating the variables using SGSIM. The simulated 
Gaussian variables are then back-transformed through MAF, Equation 5, and the normal score back-
transform. Selected model validation plots of the back-transformed Z1 and Z2 realizations are shown in 
Figure 10, where good reproduction of the univariate, multivariate, and spatial statistics is observed. As it 
is difficult to gain a sense of whether the joint density of the data is being reproduced by the realizations 
based on the scatterplots, bivariate Gaussian kernel density estimation (KDE) plots are displayed in Figure 
11 . Excellent reproduction of the joint density is observed according to this figure. 
 
Case Study 
Nickel laterite data composed of 933 observations and 3 variables (Ni, Fe, and SiO2) will be used to 
demonstrate a geostatistical MSNT based modeling framework. As observed in the scatterplots of Figure 
12, complex multivariate features are present including non-linearity, and stoichiometric constraints. 
Since the variables are compositional, the workflow uses a logratio transform [2]. This is followed by the 
normal score transform and MSNT mapping to attain a correlated Gaussian transform.  
 Based on dimension coloring and variography in Figure 13, the MSNT has transformed the data 
with considerably more distortion relative to that which was seen in the synthetic case study. This is 
reflected in the large loss of spatial structure that is observed in the transformed variograms, relative to 
the original normal score variograms. This volume of distortion would suggest that the MSNT is unsuited 
for this data, as the larger number of observations is preventing the combinatorial optimization from 
properly converging to a reasonable local minima. Based on testing, this is an issue attributed to 
observations rather dimensions, as the MSNT has completely very successfully on 6-variate data of lesser 
observations.  
 This case study will be carried forward in-spite of these large concerns, to demonstrate the type 
of issues that will result from a poor mapping. After decorrelating the transformed distribution with MAF, 
SGSIM is then used to independently simulate the uncorrelated Gaussian variables. Back-transforms are 
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then applied to return the realizations to original space. Validation plots are displayed in Figures 14 and 
15, where reasonable reproduction of the multivariate structure is observed based on bivariate 
scatterplots and KDE plots. Of great concern, however, is the poor reproduction of spatial correlation and 
marginal histograms in the realizations. This was to be expected based on the large transform distortion 
that was observed, particularly in the case of the variogram reproduction. These issues are also partially 
attributed to stationarity concerns unrelated to the MSNT. 
 
Conclusions 
The MSNT is an exciting new data transform that has a wide range of potential applications in its current 
form. While the MSNT has made large advances from its original implementation and results, its 
aspirations as a multivariate transform that is applicable to data sets of any size and dimension has not 
yet been achieved. Many potential branches of future research into the method exist as briefly outlined. 
The primary concern that remains to be addressed, however, is its sensitivity to large data sets. Both its 
execution speed and end results significantly degrade with increasing observations as demonstrated. It is 
not yet clear whether this can be effectively resolved. 
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Figure 1: Conceptual schematic of MSNT mapping from a complex multivariate distribution (original) and 
a multivariate Gaussian distribution (transformed). 

 
Figure 2: Scatterplots, histograms, summary statistics and experimental semivariograms of the 2-D 
synthetic data.  

 
 

Figure 3: Scatterplots, histograms, and summary statistics of the normal score 2-D data. 
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Figure 4: Scatterplots, histograms, and summary statistics for two random variables using MCS (left), 
LHSMDU without correlation (middle), and LHSMDU with correlation (right).  

 

 
 
Figure 5: Scatterplots of the original and transformed distribution for the 2-D synthetic data with their 
two principal component vectors overlain. 
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Figure 6: MSNT execution time based on a changing number of observations. 

 
Figure 7: Schematic representation of the original ( ( )o i jd ) and transformed ( ( )t i jd ) distances between 

the ith mapped observation and its four nearest neighbours.  

 
 

Figure 8: Dimension colored scatterplots and experimental semivariograms of the transformed data 
following PCA ordering (top) and the full MSNT transform (bottom). The experimental semivariograms of 
the normal score Y variables is provided for reference of the spatial structure before transformation. 
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Figure 9: Schematic figure of the MSNT back-transformation, where a simulated location is back-
transformed based on its proximity to the nearest 3 mapped observations.  

 
Figure 10: Selection of model validation plots. Scatterplot of the original data overlain on four back-
transformed realizations, with marginal histograms and summary statistics of the realizations (top left). 
Experimental semi-variograms of the original data and the four realizations (top right). Q-Q plots between 
the realizations and the original declustered data (bottom). 

 
Figure 11: Gridded bivariate Gaussian KDE of the original data (left) and simulated realization (right). 
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Figure 12: Scatterplots between Ni, Fe, and SiO2 for the Nickel laterite data. 

 
 
Figure 13: Scatterplots between the transformed Nickel laterite variables, where each point is colored by 
the Y value of its respective x-axis variable. The experimental semivariogram before (line) and after (dots) 
transformation are shown on the bottom. The relative number of pairs used in the calculation of each 
variogram is given by the grey histogram. 
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Figure 14: Selection of model validation plots. Scatterplot of the original data overlain on four back-
transformed realizations, with marginal histograms and summary statistics of the realizations (top). 
Experimental semi-variograms of the original data and the four variables (middle). Q-Q plots between the 
realizations and the original declustered data (bottom). 
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Figure 15: Gridded bivariate Gaussian KDE of the original data (bottom covariance matrix triangle) and 
four back-transformed realizations (upper covariance matrix triangle). 

Appendix 
Parameters for the FORTRAN coded standalone executable msnt (MSNT forward transform) are 
displayed in Figure 14  and described below: 

• datafl: file with the data to be transformed (must be normal score transformed as values 
beyond |5| are trimmed automattically). 

• nvar: number of variables to be transformed. 
• icol(i), i=1,…,nvar: column locations in the datafl where the original values of the variables 

are located. 
• nclose: number of nearest observations that should be considered when optimizing. Setting 

this value to 0 will cause the distances between all observations to be considered. This has 
large speed implications, but will produce the best results if time allows. 

• ixv(1): random number seed used to determine the starting location of the Gibbs sequence 
• icorr: if set to 1, the normal score correlation matrix of the original data will be used for 

generating a correlated transformed distribution. If set to 0, the generated transformed 
distribution will be uncorrelated. 
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• outfl: output file containing input data with the transformed variables appended. This 
output data file may also be referenced as a transform table for back-transforming simulated 
results. 

 
Figure 16: Parameter file for the msnt program. 

Parameters for the FORTRAN coded standalone executable msnt_b (MSNT back-transform) are displayed 
in Figure 15 and described below: 

• tabfl: file with the forward MSNT transform data file. 
• nvar: number of variables to be back-transformed 
• icolo(i), i=1,…,nvar: column locations in the tabfl where the original values of the variables 

are located. 
• icolt(i), i=1,…,nvar: column locations in the tabfl where the transformed values of the 

variables are located. 
• nclose: number of nearest mapped observations that should be used for interpolating the 

back-transformation. 
• datafl: file with the simulated values that must be back-transformed 
• icold(i), i=1,…,nvar: column locations in the datafl where the simulated values of the 

variables are located. 
• outfl: output file containing the back-transformed simulated values. 

 

 
Figure 17: Parameter file for the msnt_b program. 
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