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Non-Parametric Gibbs Sampler with Kernel Based Conditional Distributions 
 

Ryan M. Barnett and Clayton V. Deutsch 
 

Many geostatistical techniques require samples to be drawn from a multivariate distribution.  The 
distributions of geologic data are often described by a non-parametric distribution.  One approach is to 
infer this distribution with kernel density estimation(KDE) on a multivariate grid.  Unfortunately, the Curse 
of Dimensionality will make such methods computationally infeasible as the number of variables increases. 
A well established alternative for this problem is the Gibbs sampler, which effectively reproduces the joint 
distribution, while only requiring the conditional distributions. To apply the Gibbs sampler in a non-
parametric setting, the conditional distributions must still be inferred. We propose a kernel integration 
method for determining these conditional distributions. Unlike the calculation and storage of kernel 
density estimates on a high dimensional grid, the iterative calculation and integration of kernels along 
conditional vectors is very manageable in massively multivariate settings. The algorithm is developed 
through a brief overview of its background theory. A discussion on implementation details motivates 
future research directions, with multiple data sets used for demonstration.  
 
Introduction 
The ability to sample from a the joint distribution of a multivariate geologic dataset is valuable in many 
areas of geostatistics. A non-parametric Gibbs Sampler algorithm is proposed for this task, which uses 
integrated kernels as a basis for the required conditional distributions. The essential background theory 
related to Gibbs sampling and kernel density estimation (KDE) will be provided, before applying them to 
the non-parametric Gibbs sampler algorithm. Details pertaining to the current implementation of this 
technique are outlined. As a great deal of further study is required for these details, future research is also 
discussed. A 2-D synthetic dataset is used for demonstration throughout these early sections due to its 
visual simplicity, with a more complex 6-D Ni laterite dataset used in the concluding case study. The 
parameters for the prototype standalone executable gmv_sample are provided in the appendix. The 
remainder of this introduction will provide a brief discussion on the motivation for this technique, while 
introducing the 2-D synthetic data. 
 
Motivation  
While other potential applications for the proposed Gibbs sampler algorithm exist, including missing data 
replacement1, this work was necessitated by recent advances in Gaussian mapping transforms [2,3]. 
These mapping transforms are interested in aquiring observations from the  multivariate tails of a 
dataset`s underlying joint distribution, beyond the extents of the data itself. Consider the simulated 
drilling of a True synthetic model in Figure 1. As seen in this synthetic case, drill sample data will often fail 
to capture a great deal of information related to the underlying geologic deposit. If geostatistical 
simulation was performed using this data, it would be difficult to infer the multivariate tails for 
extrapolating the results. Capturing these extreme values in geostatistical models can be very important 
for certain petroleum and geometallurgical settings.  
 
Gibbs Sampler 
The Gibbs sampler is a method that allows for random variables of a multivariate distribution to be 
simulated without requiring the joint or even marginal densities. Although its foundations may be traced 
to work by Metropololis et al. [10], the Gibbs sampler came into wide spread use with the seminal paper 
by Geman and Geman [7]. Now applied in countless fields of study, it has already seen highly effective 
geostatistical applications with the spatial modeling of indicator variables [10,14].  
 Although the convergence proofs are not nearly as straightforward [4,7], the Gibbs sampler is 
extremely simple in its final algorithmic form. Following the theory given by Casella and George [4], 

                                                                 
1 Barnett, R., & Deutsch, C. (2012). Missing Data Replacement in a Complex Multivariate Context. CCG 
Annual Report 14, Paper112. 
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suppose one is interested in sampling from a bivariate distribution composed of Y1 and Y2 random 
variables. The Gibbs sampler iteratively draws random values for each variable, forming what is called the 
Gibbs sequence as seen in Equation 1. Here the subscript represents the ith Gibbs sample. 
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After specifying the starting value as 1 1
0 0Y y=  (which may be done randomly), the Gibbs sampler 

iteratively draws the remaining values from conditional probability distributions, that are formed based 
on the value of the previously sampled random value. In the bivariate case of Y1 and Y2, this conditional 
sampling is represented by Equation 2. 
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Given a long enough sequence, the Gibbs sampled distributions of Y1 and Y2 will become statistically 
representative of the True Y1 and Y2 distributions. While the exact number of required Gibbs samples will 
potentially vary based on the complexity of the underlying random variables, it is expected based on 
statistical fundamentals [4] that less samples will be required for the Gibbs distributions to accurately 
represent simple statistics such the marginal means. As n becomes sufficiently large, however, the Gibbs 
distributions will converge to become representative of the True marginal and joint densities. The 
generalized multivariate representation of Equations 1 and 2 for k number of variables is given by 
Equations 3 and 4 respectively.  
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It may be surpising upon first glance that that such a simple and seemingly naïve algorithm possesses 
these remarkable convergence properties. Readers are referred to the available references for a more 
thorough explanation of the background theory and convergence proofs [4,7,10], as only the essential 
basis is provided here.  
 The Gibbs sampler takes strong advantage of the Markov chain property2, which is represented 
mathematically by Equation 5 [10]. A Markov chain is composed of a number of values for a random 
variable(s), which may vary with time t. As seen in Equation 5, the conditional distribution of a random 
variable at any given time is only dependent on its value at the immediately preceding time. The values 
occuring at times prior to this may be disregarded. 
 

                                                                 
2 The Markov chain property plays an important role in other areas of geostatistics, including colocated 
cokriging and the Markov model [6] where t is treated as spatial rather than temporal.  
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Literature treats Xt as the state of a random variable at time t, while all of the values that X can possibly 
assume are referred to as the state space. A state space may be categorical or continous, and of any 
dimension. Markov chains will explore this state space, with each step controled by transition 
probabilities [10]. It is not difficult to connect the Gibbs sampling algorithm to Markov chains, as the 
Gibbs sequence in Equation 3 represents the changing states of random variables, with their transition 
probabilities defined by the conditional distributions in Equation 4. 
 The Gibbs sampler was originally developed and is commonly applied with multivariate 
parametric models, [4,7] where it is difficult to attain the joint distribution through marginal integration. 
Parametric conditional distributions are combaritively easy to analytically define, motivating the Gibbs 
sampler approach. As gelogic data is non-parametric, however, its conditionals cannot be defined 
analytically. As stated earlier, this paper suggests that KDE can be used as a representative and 
computationally efficient means for inferring these distributions based on the data. Introductory kernel 
theory is provided in the next section, before applying it to attain the required conditional distributions. 
 
Kernel Based Conditional Distributions  
The kernel density estimation (KDE) calculation is given by Equation 6 [8], where K is any kernel satisfying 
the conditions ( ) 0K x ≥ and ( ) 1K x dx =∫ [8]. Xi denotes the ith data value, while x is the value or location 

of interest where the density must be estimated. n is the number of data used in its calculation, while h is 
the bandwidth (potentially subjective smoothing parameter that will be further outlined in the 
discussion).  
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Returning to the problem of inferring conditional distributions from potentially high dimensional data, 
consider discretizing a multivariate vector that represents the intercept of fixed conditional values with 
the random variable to be drawn. This vector is termed as L, which is k number of dimensions in 
accordance with the data, and discretized at m number of locations.  Applying Equation 6, the KDE value 
at the discritized location Lj may be calculated based on the n number of data as seen in Equation 7. To 
attain the licit conditional distribution C, these integrated kernel values are then divided by their sum 
(Equation 8).   
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This concept is visually demonstrated in the schematic of Figure 2, where correlated Gaussian kernels are 
being integrated to form conditional distributions. In Figure 3, the outlined non-parametric Gibbs 
sampling algorithm is demonstrated within the same bivariate schematic setting. Moving away from 
schematics, a real step-by-step demonstration of the non-parametric Gibbs sampler is displayed in Figure 
4. It is being executed on normal scores of the synthetic data presented in Figure 1.   
 
Implementation 
A great deal of research remains to be completed on details that fall out of the above described method. 
Implementation of the gmv_sample program (appendix) will be discussed, along with potential 
improvements that could be made in the future. 
 
Normal Score Transform 
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Initial testing has found that better results are attained when this non-parametric Gibbs sampling 
algorithm is executed on unvariate Gaussian data. The normal score transform [1,6] is very commonly 
applied within geostatistics for modeling variables in Gaussian space. It is given by Equation 9, where 
quantiles are matched between the empirical data CDF, F, and the standard normal CDF, G. The sampled 
data from Figure 1 is normal scored in Figure 5.  

           

1( ( ))y G F z−=

                                                                                

(9) 

Gibbs sampling observations in normal score space may be back-transformed to the original data 
distribution. There are many potential reasons why the algorithm works better on normal score data, as 
opposed to the original skewed distributions. As outlined in the next sub-section, Gaussian kernels are 
currently used as a basis for the conditional distributions. It makes intuitive sense that Gaussian kernels 
would more accurately represent marginally Gaussian data, than irregular and skewed data. Further, 
while the Gibbs algorithm is proven to converge towards the underlying joint distribution, this non-
parametric implementation may find it easier to reproduce marginally Gaussian variables due to the 
Central Limit Theorem [9]. This is all speculated reasoning that requires testing and validation.  
 
Kernel Form  
As the multivariate Gaussian distribution is generally considered the most widely applicable model in 
describing random variables, it has been applied as the initial kernel form in this algorithm. The 
multiGaussian model is given by Equation 10, where d is the number of random variables, Σ  is 
the dxd dimension covariance matrix, and µ is the vector of means for each variable [9]. Inserting f(x) 
from Equation 10 into the conditional distribution kernel function of Equation 7, the multivariate Gaussian 
KDE equation is given by Equation 11. Additional kernel forms could be considered where alternative 
parametric models (e.g. lognormal) more accurately represent the distribution. 
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Kernel Parameters 
The potentially subjective kernel parameters in Equation 12 are of paramount importance with this 
algorithm. Recall that the bandwidth h is a smoothing parameter that is applied between and within all 
dimensions3. Optimal bandwidth is often considered to be a function of the variance and number of data 
in the underlying distribution. That is to say, the required bandwidth magnitude increases as the number 
of data decreases and the variance of the data increases [8].  Through methods such as bootstrapping and 
cross-validation, many different equations have been derived for determining the optimal bandwidth 
[12]. While disagreement on the best formula continues to exist in the univariate case, difficulty in 
determining the optimal bandwidth grows far greater in multivariate settings [8].  Scott advocates that 
density estimates may be plotted using various bandwidths [13], before choosing a final one based on the 
user’s understanding of the distribution. A variety of optimal multivariate bandwidth equations were first 
applied with the non-parametric Gibbs sampler on data sets of varying sizes and dimensions. As no 
equation produced satisfactory results for all of the data sets, Scott’s user knowledge suggestion was 
adopted. Bandwidth size is therefore left to the user as a manual input parameter in gmv_sample.  
 Another decision that is not yet fully understood, is whether the Gaussian kernels should match 
the covariance Σ  of the normal score data. While it may make intuitive sense to do so, the multivariate 
arrangement of the data should naturally cause the Gibbs sampler to reproduce the underlying 
                                                                 
3 In the multivariate case, the bandwidth h may in fact be a matrix H of unique bandwidths between and 
within each dimension. This notation is avoided for simplicity since only a single smoothing parameters is 
currently applied. 
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covariance when using orthogonal kernels. Adding additional risk to the use of correlated kernels is that 
covariance is very sensitive to outlying values. Particularly with small data sets such as the one seen in 
Figure 5, these outliers may distort the covariance of the data away from that of the underlying True 
distribution. When this misrepresentative covariance is then imposed directly on the kernels, the problem 
may be exacerbated on the resultant Gibbs distribution. This remains to be thoroughly investigated. As 
with bandwidth, whether the kernels are orthogonal or correlated is left as a user defined input 
parameter for gmv_sample. 

The dramatic effect that these kernel parameters will have on this non-parametric Gibbs sampler 
algorithm is demonstrated in Figure 6. 10,000 Gibbs sampler observations are presented using varying 
bandwidths with and without the use of the synthetic data covariance (Figure 5). 

 
Extracting Observations from the Sampling Sequence 
In its current implementation, the gmv_sample program selects a starting location based on a random 
number seed, with all subsequent samples aside from the first extracted as observations for the resultant 
Gibbs distribution. In other words, if N observations are required, n in Equation 3 is set as N+1, with the 
entire sequence extracted as observations aside from 0Y (Equation 12).  
 

1 2 1 2
1 1 1 1, , ... , ... , , , ... ,k k

n n NY Y Y Y Y Y +                                                         (12) 
Although the Gibbs sequence will likely converge with this simple extraction method, the distribution will 
be somewhat dependent on its starting location. To lessen this dependence and insure that the entire 
multivariate space is visited, a large variety of extraction techniques have been developed [4]. They may 
be summarized as using multiple starting locations (with associated independent Gibbs sequences) and/or 
sampling selectively from a Gibbs sequence that is far larger than the required N number of observations. 
These extraction methods will be tested in future study. 

As mentioned, the required number of Gibbs samples will depend on properties that the user 
requires in the resultant distribution. As displayed in Figures 7 and 8 with the synthetic data, Gibbs 
distributions quickly converge toward the marginal means and standard deviations after only 100 
observations, while the marginal and joint densities require closer to 5000 observations. Note that the 
summary statistics and histograms in Figure 7 should be compared with the normal score data in Figure 5. 
The number of Gibbs observations required for convergence on the various statistics was observed to 
change with dimension and complexity of the underlying data. 
 
Case Study 
An extremely complex and higher dimension Ni Laterite dataset will be used to demonstrate and 
challenge this non-parametric Gibbs sampler algorithm. Composed of 910 samples and six variables, the 
sampling will be performed on data that have been logratio4 and normal score transformed. The 
histograms, summary statistics, scatterplots, and bivariate Gaussian KDE plots for this transformed Ni 
laterite data are presented in Figure 9. Gibbs sampling may be of interest for a variety of reasons on this 
transformed dataset5, including the determination of multivariate tails, and the joint density of sparsely 
sampled multivariate space. 
 A distribution of 10,000 Gibbs observations was generated, with its statistics presented in Figure 
10. Comparing the original data with the Gibbs distribution, good reproduction of the mean, as well as the 
marginal and joint densities is observed. Room for improvement remains in these statistics, however, 
which could potentially be tuned and improved with different kernel parameters, or a more robust 
sample extraction scheme for the Gibbs observations. Of greater concern, is the systematic inflation of 
standard deviation in all of the variables. This inflation of was also observed in the 2-D synthetic data, and 

                                                                 
4 The logratio transform [1] is not relevant to of this study, but reflects that this data was taken from a 
realistic geostatistical modeling framework that will honor compositional constraints. This transformed 
data was also used because of the exaggerated non-linear features that are present. 
5 e.g. If considering a Gaussian mapping [2,3] based simulation and requiring additional mapping points 
for the interpolation and extrapolation of back-transformed results 
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will be a focus of future research. Despite these concerns, the non-parametric Gibbs sampler has 
effectively reproduced this extremely complex multivariate data. 
 
Conclusions 
A non-parametric Gibbs sampler algorithm has been developed for multivariate sampling. It uses 
integrated data kernels as the basis for conditional distributions, which are required by the Gibbs sampler. 
Following development of the necessary theory, promising results were demonstrated using synthetic and 
real datasets. Future research is necessary into details of the algorithm, including the cause of variance 
inflation in the Gibbs distributions, kernel form, kernel bandwidth, kernel correlation, and alternative 
schemes for extraction of the Gibbs observations. Parameters for the gmv_sample program, which was 
used to produce the presented results, are outlined in the appendix. 
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Figure 1: Overview of the synthetic model construction and resultant properties of Z1 and Z2. The top 
maps display the True model values (gridded) and data sampling locations (circles). The bottom left 
scatter plot displays the True model and sampled data with True model summary statistics/histograms, 
while the bottom right scatter plot displays summary statistics/histograms of the sampled data.  
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Figure 2: Schematic illustration of the data observations, their correlated bivariate Gaussian kernels, and 
the resultant conditional distributions. The opacity of the kernels corresponds with their approximate PDF 
value. Arbitrary locations are chosen for the displayed Y1 and Y2 conditional distributions, where the PDFs 
are calculated through integrating the data kernels at discretized locations along the line.  

 
Figure 3: Schematic illustration of the non-parametric Gibbs sampling algorithm. The process begins at a 
random location (grey point), which is followed by the construction of the Y2 conditional distribution 
(blue). The randomly drawn Y2 value from the first conditional distribution is used to construct the Y1 
conditional distribution (cyan). The drawn Y1 value from the second conditional distribution, as well as 
the drawn Y2 value from the first become the first Gibbs observation, from which the next iteration of the 
algorithm begins. 
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Figure 4: Breakdown of each step involved in non-parametric Gibbs sampling for the first three iterations.  

 

 
Figure 5: Scatterplot, histograms, and summary statistics of the normal scored data.  
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Figure 6: Scatterplots of the normal score data and Gibbs sampling observations using varying bandwidth 
with and without the normal score data correlation. Histograms and summary statistics are provided for 
the Gibbs distributions. 
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Figure 7: Scatterplots of the normal score data and Gibbs sampling distributions of varying observation 
quantities. Histograms and summary statistics are provided for the Gibbs distributions. 

 
 
Figure 8: Gridded bivariate Gaussian KDE for the normal scored data and Gibbs sampling distributions of 
varying observation quantities. 
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Figure 9: Histograms (top), gridded bivariate Gaussian KDE (bottom covariance matrix triangle) and 
scatterplots (upper covariance matrix triangle) for the logratio and normal scored Ni Laterite data. 
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Figure 10: Histograms (top), gridded bivariate Gaussian KDE (bottom covariance matrix triangle) and 
scatterplots (upper covariance matrix triangle) for the Gibbs sampling distribution. 
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Appendix  
The prototype standalone executable for non-parametric Gibbs sampling with kernel based conditional 
distributions is named gmv_sample. Its parameter file is displayed in Figure 11 and described below: 

• datafile: file with the input data (recommended to be normal score transformed) 
• nvars,vcols(i), i=1,…,nvars: number of variables and their column locations, for the 

distribution upon which Gibbs sampling will be performed 
• ngibb,nloc: ngibb is the number of Gibbs observations that should be extracted, while nloc 

specifies the number of discretizations in  each conditional distribution (both parameters 
effect execution time) 

• bandw: kernel bandwidth that is applied across all dimensions 
• icor: toggles whether correlation of the data should be applied to the kernels(0=no,1=yes) 
• ixv(1): random number seed used to determine the starting location of the Gibbs sequence 
• tmin,tmax: trimming limits that applied to all variables 
• outfl: file containing the extracted Gibbs Observations 

 

 
Figure 12: Parameter file for the gmv_sample program. 
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