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Projection Pursuit Multivariate Transform 
 

Ryan M. Barnett, John G. Manchuk, and Clayton V. Deutsch 
 

Transforming complex multivariate geological data to be multivariate Gaussian is an important and 
challenging problem in geostatistics. A variety of transforms are available to accomplish this goal, but may 
struggle with data sets of high dimensional and sample sizes. Projection Pursuit Density Estimation (PPDE) 
is a well-established non-parametric method for estimating the joint PDF of multivariate data. A central 
component of the PPDE algorithm involves the transformation of the original data towards a multivariate 
Gaussian distribution. Rather than use the PPDE for its original intended purpose of density estimation, 
this convenient data transformation will be utilized to map complex data to a multivariate Gaussian 
distribution within a geostatistical modeling context. This approach is proposed as the Projection Pursuit 
Multivariate Transform (PPMT), which shows the potential to be very effective on data sets with a large 
number of dimensions. The PPMT algorithm is presented along with considerations and case studies. 
 
Introduction 
The multivariate Gaussian distribution is very commonly adopted within geostatistics for describing 
geologic variables. This is due to the mathematical tractability of the multiGaussian distribution [10], 
which may be either convenient or necessary for geostatistical modeling. As geologic variables are often 
non-Gaussian in nature, a wide variety of techniques [1] are available to transform them to a 
multiGaussian form, with their associated back-transforms to reintroduce the original distributions.  

The widely applied normal score transformation [5,10] will guarantee that variables are made 
univariate Gaussian; however, multivariate complexities such as heteroscedastic, non-linear, and 
constraint features may still exist. Multivariate Gaussian transforms such as the Stepwise Conditional 
Transform [11], kernel based methods [12], and the Multivariate Standard Normal Transformation (MSNT) 
[3,4] may successfully transform complex data to be multiGaussian, but could suffer from issues revolving 
around the number of dimensions or observations in the data.  

Likely to excel on data sets that cause stress for the above techniques, the Projection Pursuit 
Multivariate Transform (PPMT) is proposed here for facilitating multiGaussian geostatistical modeling. 
Adapted from the Projection Pursuit Density Estimation (PPDE) algorithm [6,7,8,9], the PPMT iteratively 
searches for and Gaussianizes highly non-Gaussian 1-D projections in the data. Following a requisite 
number of iterations, the complex data are transformed to be multiGaussian. The success of the PPMT is 
judged based on maintenance of the original multivariate structure [3] and degree of Gaussianity in the 
transformed data.  

An inverse-distance technique originally developed for the MSNT [3,4] is used to back-transform 
simulated Gaussian realizations to the original complex space based on the PPMT mapping. Additional 
observations may be retrieved using Gibbs sampling [2] in order to better define the PPMT mapping and 
facilitate its multivariate extrapolation when back-transforming. 

 A review of the essential PPMT theory is presented, followed by a discussion on its major 
considerations. A 2-D synthetic dataset is used throughout these sections for demonstration. A 3-D Nickel 
Laterite dataset of greater non-linear and stoichiometric complexity will then be used to demonstrate the 
PPMT in a case study. 
 
Projection Pursuit Concept 
First introduced by Freidman and Tukey [7], PPDE may be used to determine the joint probability density 
function (PDF) of a multivariate distribution. Non-parametric in nature, the PPDE is particularly well suited 
and effective relative to other techniques when applied to complex data of a high number of dimensions 
[7,9].  

The overall premise is to detect linear projection vectors in the data1 that are the most complex 
or interesting, where the Gaussian distribution is treated as the least complex [8] because the projection 

                                                                 
1 Friedman [6] also developed the PPDE algorithm for working with 2-D projections along planes. 
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of a multiGaussian distribution is also Gaussian [10]. The assumption is made that non-Gaussian 
structures in the higher dimensions will be exhibited in the lower dimensional projection. Friedman [6] 
discusses that projections exhibit a smoothed shadow of what are likely more marked complexities in the 
higher dimensions.  

Once the most interesting projection vector as been determined, the individual high dimensional 
components may be transformed to normalize their projection (termed Gaussianize by the literature). 
Iterating this search and Gaussianize algorithm, the high dimensional data is gradually transformed to a 
multiGaussian distribution. The final step of the PPDE algorithm involves estimating the multivariate 
density through combining the 1-D projections, but that process is not relevant to the PPMT.  
 
Projection Pursuit Theory 
The presented PPDE algorithm in this section was almost entirely developed by Friedman [6], although its 
syntax largely follows Hwang [9]. An initial normal score transform and a modification to the data 
sphering are the only changes that are made from these sources. 
 
Normal Score and Data Sphering  

Before the iteration steps of projection pursuit may be applied, the data matrix k x nz of k dimensions or 
variables and n observations must first be transformed to have suitable properties. The familiar normal 
score transform (Equation 1) is first applied, where quantile matching is performed between the empirical 
data CDF, F, and the standard normal CDF, G. This is done so that the PPMT transformed variables will 
reside in standard normal units. 

           

1( ( ))y G F z−=

                                                                                

(1) 
An orthogonal covariance matrix and unit variance between the variables will also be critical at several 
stages of the iteration algorithm, which is achieved by data sphering in Equation 2. Here the linear 

combination of the normal scored data, y, and the sphering matrix
1

2S
−

, produces the transformed data, 
x, that is suitable for projection pursuit. The sphering matrix is calculated according to Equation 2, where 
the eigenvector matrix U and the eigenvalue matrix D are attained from spectral decomposition of y’s 
covariance matrix. Note that traditional data sphering [6] will also center the data through 
subtracting { }E y . This is not necessary here, however, since the data have already been centered by the 
normal score transform. 

1 1 1
2 2 2, Tx S y where S UD U

− − −
= =                                                       (2) 

Projection Index  
Central to PPDE is the test statistic (termed projection index by the literature) that is used to measure the 
deviation of each projection away from the Gaussian distribution. Friedman’s projection index [6] will be 
presented here due to the promising initial results that it produced. It was specifically designed to place 
greater emphasis on the body of the distribution as opposed to the tails.  This was done because complex 
structures such as multi-modality and non-linearity will most often occur near the distribution’s center. 
Many of the more commonly applied test statistics are more highly sensitive to the tails of a distribution, 
and therefore were deemed less suitable [6].Excellent sources [6,9] are available for the somewhat 
lengthy development of the projection index through its conceptual, integral, and numerical forms, but 
only the latter will be presented here. 

Given a directional vector 1k xα

 

 and the associated projection Tp xα= , the projection index 

( )I α may be calculated according to Equation 3.  
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Here the Legendre polynomials are denoted by ( )j rψ , whose calculation is given by Equation 4.         
                                        

( ) ( )0 1 1 2( ) 1,  ( ) ,  and ( ) 2 1 ( ) 1 ( ) ,  for 2j j jr r r r j r r j r j jψ ψ ψ ψ ψ− − = = = − − − ≥             (4) 

The Legendre polynomials are a function of r, which is a transformed version of the projection, p, 
according to Equation 5. 

2 ( ) 1,      [ 1,1]r G p r= − ∈ −                                                                      (5) 
Optimized Projection Search 
To quickly determine the vectorα yielding the maximum projection index ( )I α , an optimized search is 
utilized that begins with a course stepping along combinations of the principal component axes2 [6]. Once 
a maximum ( )I α  is determined along one of these major axes,

 

α is then fine-tuned using steepest 
ascent optimization. This requires the derivative of Equation 3, which is given by Equation 6 under the 
constraint 1Tα α = . 
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Here ' ( )j rψ is the derivative of the Legendre polynomials, which is calculated according to Equation 7.     
                                                                                     

1 1 1' ( ) 1,   and ' ( ) ' ( ) ( ),    for 1j j jr r r r j r jψ ψ ψ ψ− −= = + >

                           

 (7) 
Gaussianize 
With the vectorα yielding the maximum ( )I α

 

determined, the final step of each iteration is to transform 
the high dimension data x so that its projection p along α  is normalized according to Equation 8. 

1( ( ))p G F pα
−=

                                                                         

 (8) 
To accomplish this, the orthonormal matrix U (Equation 9) is first determined, where the beta coefficients 
are calculated using the Gram-Schmidt algorithm [9].  

1 2 1[ , , ,..., ]T
kU α β β β −=

                                                                  

 (9) 
The linear combination of U and the data matrix x (Equation 10), results in a transformation where the 
first row is the projection Tp xα= .  

1 2 1[ , , ,..., ]T T T T T
kUx x x x xα β β β −=

                                                    

 (10) 
Next, let Θ be a vector that transforms the first row of Ux to the standard normal distribution according 
to Equation 8, but leaves the remaining orthogonal directions intact (Equation 11).  

1 2 1( ) [ , , ,..., ]T T T T
kUx p x x xβ β β −Θ = 

                                                  

 (11) 
Equation 12 is finally applied to transform the data in a manner that Gaussianizes the projection, but does 
not alter the orthogonal directions. 

( )Tx U Ux= Θ

                                                                           

 (12) 
Following Gaussianization, the projection index along this direction will be zero. The optimized search for 
the maximum projection index may then be reapplied to find other complex directions if they exist. 
Iteratively applying this search and Gaussianize procedure, the multivariate distribution will eventually 
approach a multiGaussian one.  

A 2-D synthetic case study is introduced here to demonstrate the PPMT. The synthetic model and 
sampled data are displayed in Figure 1, where complex multivariate features and distinctive spatial 
structures are observed in the original Z1 and Z2 variables. Following the normal score and data sphering 
of these variables according to Equations 2 and 3, the projection pursuit iterations are demonstrated in 
Figure 2, where each iteration panel displays the histogram of the most complex projection and scatter 
plots before and after Gaussianizing. The projection vector with the maximum projection index for each 
                                                                 
2 This course stepping is first executed to minimize the potential of the subsequent gradient based 
optimization becoming trapped in a local maxima. 
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iteration is displayed by the solid line in the scatter plots, where the points are colored by their associated 
unaltered X value (Equation 2 to serve as a visual reference for the shift of each observation through the 
iterations. This is referred to as dimension coloring [3], which is expanded on in the following section. 
Note the marked shift towards a multivariate distribution after only four iterations. 
 
Judging the Results 
Due to projection based dimension reduction residing at the core of PPDE, it was designed to be effective 
with high dimensional data. Relative to other forms of density estimation such as kernel methods, the 
PPDE has proven to be robust against the curse of dimensionality [6,9]. Judging how successfully the 
PPMT is applied for geostatistical frameworks will be based on the transform distortion and multivariate 
Gaussianity of the transformed data. 

 
Transform Distortion 
First, how well the original multivariate structure of the data is maintained through the transformation. A 
successful Gaussian mapping should minimize the changes that occur to the distances between 
observations in original and transformed space [3,4]. If observations that are very near to one another in 
original space are mapped far apart in transformed space (and vice-versa), it is likely that the multivariate 
structure will have been unreasonably distorted. This will result in the destruction of spatial structure that 
will be apparent in the variogram of the transformed variables. While the MSNT calculates this transform 
distortion in its objective function, its authors also proposed that the distortion may be intuitively judged 
according to dimension coloring [3]. Through coloring the transformed variable scatterplots according to 
their untransformed values, one gains insight into the nature of spatial shifting that has occurred as a 
result of the transform. Most important, is that if little distortion has occurred, a smooth gradient of color 
will be observed [3]. 
 As discussed in the previous section, Figure 2 displays the first four iterations of the PPMT being 
applied to the synthetic data. Figure 3 then displays the transformed scatterplots following 25 iterations, 
where the points are colored by their associated Y values (following the normal score but prior to 
sphering and iterations as seen in Equation 1). A smooth gradient is seen, indicating that very little 
distortion has occurred since all of the neighbors in original space remain very close in the transformed 
space. The normal score and PPMT transformed variograms are also displayed in Figure 3, where very 
little loss of spatial structure has occurred. Based on work with a variety of datasets, including the two 
presented in this paper, the PPMT appears to produce minimal transform distortion. 
 
Multivariate Gaussianity and Stopping Criteria 
Also important in judging the PPMT success is the Gaussianity of the transformed data following the final 
projection pursuit iteration. Having decided on the form of the projection index ( )I α

 

in Equation 3, the 
test statistic that is used to define Gaussianity has already been determined. Choosing the value to which 
the maximum ( )I α must descend before the data are deemed Gaussian enough (stopping criteria) may be 
somewhat subjective and is not yet fully defined.  

Complicating this decision is that the PPMT will not likely achieve the same degree of Gaussianity 
in data of decreasing observations and increasing dimensions. The ( )I α

 

in Equation 3 is standardized by 
the number of observations and dimensions used in its calculation, allowing for the direct comparison of 
its maxima across datasets of differing observations and dimensions (Figure 4). It may be observed that 
increasing the number of observations leads to far faster descent towards Gaussianity, as well as a final 
superior form of Gaussianity. This is in line with previous literature [6,9], where Hwang even suggested 
that 400 observations may be required to achieve a reasonably Gaussian form. Likewise, decreasing the 
number of dimensions results in improved convergence towards a final Gaussian form. Visual inspection 
of scatterplots for each iteration and dataset in Figure 4 would suggest that anything less than a 
maximum ( )I α  of 0.05 could be considered reasonably Gaussian. The presented results in this paper, 
however, are simply based on a constant 25 iterations due to the profile of maximum ( )I α that is 
apparent in Figure 4. Stopping criteria that may require additional iterations beyond 25 is not anticipated 
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to be an issue since the transform distortion of the PPMT tends not to degrade with increasing iterations, 
and execution time is minimal (Figure 5).  
 
Projection Pursuit Back-Transform 
Following any arbitrary modeling framework in Gaussian space, a method is required for back-
transforming the simulated realizations to their original distribution. The MSNT back-transform [3,4] may 
be appropriately applied to a PPMT mapping. Though the PPMT and MSNT are entirely different 
algorithms, the end results of a Gaussian mapping is achieved by both.  

Since the simulated grid nodes will not possess identical values to the mapped observations, an 
interpolation method is used by the MSNT to infer their location in original space based on their proximity 
to the nearest mapped observations in Gaussian space. This concept is represented by Equation 13, 
where the ith simulated location is back-transformed based on its euclidean distance in transformed space 

( )t i jd  , to the jth mapped observation. This amounts to inverse distance weighting, where ( )t i jd will 
determine the  weight attributed to the original values of the jth mapped observation on  the yi  estimate.  
Any number of nearest mapped observations could be used for this interpolation, but it is advocated [3] 
that this should be chosen based on the k number of multivariate dimensions, where k+1 number of 
observations is optimal. Using less than this does not adequately constrain the multivariate interpolation, 
but increasing beyond k+1 will begin to converge the back-transformed results towards the mean. 

                                          
1 1

1 1( )

1,  where  and 1
k k

i j j j j
j jt i j

y y
d

λ λ λ
+ +

= =

= = =∑ ∑                                                    (13) 

Returning to the PPMT transformed synthetic data from Figure 5, SGSIM is used for simulating 
the Gaussian variables before back-transforming according to Equation 13. Selected model validation 
plots of the back-transformed Z1 and Z2 realizations are shown in Figure 6 where good reproduction of 
the univariate, multivariate, and spatial statistics is observed. As it is difficult to gain a sense of whether 
the joint density of the data is being reproduced by the realizations based on the scatterplots, bivariate 
Gaussian kernel density estimation (KDE) plots are displayed in Figure 7. Excellent reproduction of the 
joint density is observed according to this figure. Note that this synthetic dataset was composed of 280 
observations, and therefore represents a somewhat challenging form for the PPMT. A potential concern 
with the back-transformed scatterplot is that no extrapolation takes place, with the realizations entirely 
constrained within the convex hull of the data. Further, there are somewhat aesthetically unpleasing 
strings of data that occur where few original mapped observations exist to define the mapping. While 
these issues may not be a concern for most applications, potential solutions will be the focus of the next 
section. 
 
Gibbs Sampler for Improved Mapping and Extrapolation 
It is apparent from Figure 1 that multivariate tails exist in the True model that the 280 sample data do not 
capture. This is a common sampling phenomenon that is often handled by allowing some extrapolation 
beyond the limits of the sample data where such a practive is justified. This extrapolation is straight 
forward in the univariate case (Figure 8), where transforms such as the normal score [5] perform 
interpolation between the extreme observations of the sample data and user specified tail values. 
Multivariate extrapolation is not straight forward, because the location of these tail values cannot be 
described by a single number; rather they take on the form of a multidimensional contour. These 
contours are known in the case of parametric distributions such as the Gaussian model (Figure 8), but are 
not often understood for non-parametric data. 
 One potential solution is to perform a sampling of the multivariate distribution in order to obtain 
a greater number of observations for the forward mapping. So long as the utilized sampling algorithm 
defines an accurate density for the tails of the distribution, a great number of sampled observations 
(ideally matching the number of simulated nodes) will provide the forward mapping with points in this 
extrapolation space.  

As seen in Figure 7, areas in the multivariate space where there are a sparse number of mapped 
observations will result in unattractive stringing of back-transformed realizations. This multivariate 
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sampling approach also presents a solution to this issue, as a great number of mapping observations are 
introduced to these sparse regions, reducing the occurrence of this stringing effect. 

Clearly the success of this approach depends on the chosen multivariate sampling algorithm for 
generating a set of observations that are representative of the original density and critical statistics. A 
non-parametric algorithm based on the Gibbs sampler is utilized [2], which is particularly well suited for 
high dimensional and complex multivariate data. The Z synthetic variables are normal scored to their Y 
equivalents, before applying the multivariate sampler [2] to define an additional 10,000 observations 
(Figure 9). These data are then combined and transformed via the PPMT, with the first and last iterations 
shown in Figure 10. Scatterplots of the combined data are displayed beside the isolated original data to 
show that both sets approach Gaussianity. This is to be expected so long as the Gibbs observations truly 
reproduce the original data density. Using only the original data to condition the subsequent SGSIM 
simulation, the Gaussian realizations are then back-transformed using the full combination of Gibbs and 
original mapped observations. The scatterplot of one back-transformed realization is presented in Figure 
11, alongside scatterplots of the True model and a PPMT realization without Gibbs observations to define 
the mapping. The original data is overlain on each scatterplot for reference. The Gibbs observation 
mapping results in a back-transformation that reasonably reproduces the tails observed in the True 
model. Very few string artifacts are also observed. 
 
Case Study 
Nickel laterite data composed of 933 observations and 3 variables (Ni, Fe, and SiO2) will be used to 
demonstrate a geostatistical PPMT based modeling framework. As observed in the scatterplots of Figure 
12, highly complex multivariate features are present including non-linearity, and stoichiometric 
constraints. Since the variables are compositional, the workflow uses a logratio transform [1]. This is 
followed by the PPMT, with the first and last iterations shown in Figure 13. Based on dimension coloring 
and variography in Figure 14, the PPMT has transformed the data with minimal distortion to the 
multivariate structure. This is reflected in the minimal loss of spatial structure that is observed in the 
transformed variograms, relative to the original normal score variograms. SGSIM is then used to 
independently simulate the uncorrelated Gaussian variables, with the original data used for mapping the 
realizations back to original space. Validation plots are displayed in Figures 15 and 16, where good 
reproduction of the univariate, multivariate, and spatial structure is observed. The slight decrease in 
spatial correlation of the realizations relative to the data and deviations of the Q-Q plots are mainly 
attributed to stationarity concerns rather than PPMT related issues.  
 Additional variables from the Nickel laterite dataset were used to assess the applicability of the 
PPMT in higher dimensions. MgO, Co, and Al2O3 were added in varying amounts to form a total of 4 and 6 
variables (from which Figure 4 was constructed). While a slight degradation in the final Gaussianity of the 
transformed variables was observed (Figure 4), the PPMT was found to be successfully applied to 
geostatistical frameworks with this increasing number of variables. 
 
Conclusion 
The PPMT developed in this work is a promising new approach for facilitating multivariate geostatistical 
modeling. The PPMT transforms any multivariate dataset to be uncorrelated and multivariate Gaussian. 
An inverse-distance based interpolation method is used for back-transforming the realizations. This back-
transformation may be aided by multivariate sampling to better define the sparsely mapped regions, as 
well as to allow for extrapolation. Although it performs best with an increasing number of observations 
and a decreasing number of variables, initial testing found that the PPMT may be successfully applied to 
datasets of varying size and dimension.  

Future PPMT research is likely to center on the consideration of alternative projection indices 
than the one employed by Friedman [6]. Additionally, a more definitive stopping criteria is required, with 
back-fitting [6,9] applied for improving multiGaussianity of the transformed data.  
 
 
 
 



Paper 103, CCG Annual Report 14, 2012 (© 2012) 

 103-7 

References 
 
1 Barnett, R. (2011). Guidebook on Multivariate Geostatistical Tools. Edmonton, Alberta: Centre for 

Computational Geostatistics. 
2 Barnett, R., & Deutsch, C. (2012). Non-Parametric Gibbs Sampler with Kernel Based Conditional 

Distributions. CCG Annual Report 14, Paper 102. 
3 Barnett, R., & Deutsch, C. (2012). MSNT Advances and Case Studies. CCG Annual Report 14, Paper 

101. 
4 Deutsch, C. (2011). Multivariate Standard Normal Transformation. CCG Annual Report 13, Paper 

101. 
5 Deutsch, C., & Journel, A. (1998). GSLIB: A geostatistical software library and user's guide, second 

edition. Oxford University Press. 
6 Friedman, J. (1987). Exploratory Projection Pursuit. Journal of the American Statistical 

Association, vol.82, pp.249-266. 
7 Friedman, J., & Tukey, J. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE, 

C-23, 881-890. 
8 Huber, P. (1985). Projection pursuit. Annals of Statistics, vol.13, pp.435-475. 
9 Hwang, J., Lay, S., & Lippman, A. (1994). Nonparametric multivariate density estimation: a 

comparative study. IEEE Transactions on Signal Processing, vol.42, pp.2795-2810. 
10 Johnson, R., & Wichern, D. (1988). Applied Multivariate Statistical Analysis. New Jersey: Prentice 

Hall. 
11 Leuangthong, O., & Deutsch, C. (2003). Stepwise conditional transformation for simulation of 

multiple variables. Mathematical Geology, vol.35, no.2, pp.155-173. 
12 Manchuk, J., & Deutsch, C. (2011). A program for data transformations and kernel density 

estimations. CCG Annual Report 13, Paper 116. 
 

 
 
Figure 1: Overview of the synthetic model construction and resultant properties of Z1 and Z2. The top 
maps display the True model values (gridded) and data sampling locations (circles). The bottom left 
scatter plot displays the True model (blue) and sampled data (red) values. The experimental omni-
directional semi-variograms are shown in the bottom right for Z1 (red) and Z2 (blue). 
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Figure 2: Illustration of the first four iterations of the PPMT on the 2-D synthetic data. Points are colored 
by their associated X value.  
 
 

 
 
Figure 3: Scatterplots of G1 and G2, where each point is colored by its associated Y1 (left) and Y2 (middle) 
values. The omni-directional experimental semivariogram before and after transformation are shown on 
the right. 
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Figure 4: Summary of the PPMT Gaussianizing difficulty with a changing number of observations and 
dimensions. Projection index maximum value for each PPMT iteration is displayed, where lines are 
colored, shaded, and scaled according to the top table. Based on a weighted average value of the final five 
iterations, the actual Gaussianizing difficulty is given in the second table. 
 
 
 
 

 
Figure 5: PPMT execution time (25 iterations) for a changing number of observations. 
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Figure 6: Selection of model validation plots. Scatterplots between the original data (red) and simulated 
values (blue) in the top left. Experimental semivariogram of the data (dots) and the simulated realizations 
(lines) for Z1 (red) and Z2 (blue) in the top right. Q-Q plots between the declustered data and simulated 
realizations for Z1 (bottom left) and Z2 (bottom right). 
 
 

 
Figure 7: Gridded bivariate Gaussian KDE of the original data (left) and simulated realization (right). 
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Figure 8: Schematic illustration of the univariate (left) and bivariate (right) Gaussian distribution regions 
that will require extrapolation in the case of simulated nodes exceeding the sampled data. 
 
 
 

 
Figure 9: The 280 original normal scored Y data (red) overlain on 10,000 Gibbs sampling observations 
(blue). 
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Figure 10: Projection histograms, and X colored scatterplots for the first and twenty-fifth iteration of the 
PPMT where Gibbs sampled observations are included in the transformation along with the original data. 
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Figure 11: Scatterplots between the (i) True model (blue) and sampled data (red) (top right), (ii) simulated 
values without the use of Gibbs sampling observations (blue) and sampled data (red) (top left), and (iii) 
simulated values with the use of Gibbs sampling observations (blue) and sampled data (red) (bottom). 
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Figure 12: Scatterplots between Ni, Fe, and SiO2 for the Nickel laterite data. 

 

 
Figure 13: Each panel displays the projection histograms and scatterplots before and after Gaussianizing, 
for the first and 25th PPMT iteration. Each scatterplot is colored by the X value of its respective x-axis 
variable, with the orientation of the maximum projection index vector given by the solid line. 
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Figure 14: Scatterplots between the transformed Nickel laterite variables, where each point is colored by 
the Y its respective x-axis variable. The omni-directional experimental semivariogram before (line) and 
after (dots) transformation are shown on the bottom. The relative number of pairs used in the calculation 
of each variogram is given by the grey histogram. 
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Figure 15: Selection of model validation plots. Scatterplots between the original data (red) and simulated 
values (blue) (top). Experimental semivariogram of the data (dots) and the simulated realizations (lines) 
(middle). Q-Q plots between the declustered data and simulated realizations (bottom). 
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Figure 16: Gridded bivariate Gaussian KDE of the original data (bottom covariance matrix triangle) and 
four back-transformed realizations (upper covariance matrix triangle). 
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Appendix  
The PPMT MATLAB function was written as prototype code for a FORTRAN based standalone executable. 
This function is seen being called from the script in Figure 17 (line 15), with the lines above specifying the 
required input parameters in a format mimicking CCG executables. Likewise, input and output data files 
are Geo-EAS formatted files. Treating this function calling script as an executable par file, the input 
parameters are described below:  

• datafl: file with the input data to be transformed 
• vcols(i), i=1,…,nvars: column locations within the datafl for the variables to transformed. 

The nvars number of variables is calculated based on the length of this input vector 
• tmin,tmax: trimming limits that applied to all variables 
• maxiters: the number of PPMT iterations (since stopping criteria is not yet defined) 
• igibb: toggles whether Gibbs observations will be included with data observations in the 

PPMT mapping (0=no,1=yes) 
• gibbfl: file containing Gibbs observations (required if igibb=1) 
• outfl: file containing input data with the transformed variables appended (only the data with 

no Gibbs observations) 
• trnfl: file containing the original and transformed observations (data and Gibbs 

observations). This must be referenced for the back-transform if igibb=1 

 

 
Figure 17: PPMT Matlab function parameters. 


	Introduction
	Projection Pursuit Concept
	Projection Pursuit Theory
	Projection Pursuit Back-Transform
	Case Study
	Appendix

