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Improvements in Continuous Variable Simulation with Multiple 
Point Statistics  

 
Jeff B. Boisvert 

 
A modified version of Mariethoz et al’s (2010) algorithm for simulating continuous variables using multiple 
point statistics is presented.  The features of the training images are well reproduced in the resulting 
simulations; however, the user is required to define a number of tolerances.  The modification presented in 
this work focuses on improving the search for a pattern during simulation.  In general, patterns in the TI 
are found quicker and are more similar to the desired template.   
 
Introduction 

Multiple point statistics (MPS) is commonly used to generate complex categorical models and 
many algorithms are available for implementing MPS with categorical variables.  Continuous variables are 
more difficult to simulate as the multiple point statistic cannot be summarized by a simple count of 
unique patterns.  A promising MPS algorithm for continuous variables is presented by Mariethoz et al 
(2010).  The idea is to search for surrounding data in the realization, find the nearest n simulated nodes, 
scan the training image (TI) directly and calculate the difference between the pattern in the simulation 
and the pattern in the TI.  A tolerance for accepting a sufficiently similar pattern in the TI is defined by the 
user; when a pattern is found with a tolerance less than the specified tolerance, the value in the TI is used 
as the simulated value in the realization.  Mariethoz et al (2010) version of the algorithm scans the TI 
randomly until a sufficiently similar pattern is located.  The proposed algorithm in this work uses a sorted 
TI in order to more quickly locate similar templates in the TI.  This has a twofold improvement 1) relevant 
patterns are found quicker, reducing the simulation time and 2) patterns with a lower error can be found, 
reducing the overall error as measured by the average pattern dissimilarity in a realization. 

The methodology section presents the algorithm.  Next, the FORTRAN program MPS_CONT.exe is 
described with various options.  Finally a 2D example demonstrates the technique.  Note that the 
algorithm is fully compatible with 3D TI’s and realizations; however, for this work, a 2D TI will be sufficient 
for demonstration purposes.  The algorithm scales linearly to 3D with the number of patterns in the TI and 
the user defined number of nearest nodes to retain for simulation.  Note that an additional benefit of this 
methodology is that an MPS template is not required.  The user specifies the number of nearest samples 
to use and is not limited by a fixed template. 

Note that the generation of a suitable 2D or 3D TI is not discussed here.  It is the users 
responsibility to generate the TI; however, some guidance for using blast hole data as a TI is provided in 
(Paper 304 in this report). 
 
Methodology 
The general paradigm of MPS simulation is to find the appropriate local distribution of a variable of 
interest conditional to previously simulated values.  Typically, a pattern or MPS template is defined; all 
previously simulated values falling in this template are used as conditioning data (similar to a search 
template with traditional Gaussian based techniques).  All locations in the TI that match this pattern are 
found and the local distribution is defined by the TI values corresponding to the central template node.  A 
value is drawn at random from this distribution and included as a previously simulated value for future 
locations.  This is repeated for all locations in the model and a realization is generated. 

The difficultly is in finding similar patterns in the TI.  This is made easier if the variable can only 
contain a finite number of discrete values, such as with facies codes and rock types; in this case, efficient 
search trees can be used to store all patterns and local distributions can be quickly extracted from the 
tree.  If the variable of interest is continuous, a search tree cannot be used in the same way.  Mariethoz et 
al (2010) propose the following MPS algorithm that is appropriate for continuous variables (Figure 1): 
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Step A) Generate an appropriate TI. 
 

Step B) Search for n nearest neighbors in the realization.  The technique does not require a fixed 
template, similar to Gaussian based techniques, it implements a user defined number of nearest 
previously simulated nodes.  Typically this number is selected to be less than 60 for computational 
efficiency. 
 

Step C) Using the n nearest neighbors as the template, directly scan the TI for similar patterns. A 
starting location is selected randomly within the TI and the scan progresses through the image in order.   
 
 Step D) Calculate the difference between the data found in the realization and the pattern in the 
TI.  This is done using Eqn 1. 
 

Step E) When a pattern in the TI is found that is less than a user defined tolerance, the value in 
the central node is used as the simulated value for the realization. 
 

Step F) Repeat for all locations in the model. 
 

Any criterion could be used to determine pattern similarity.  In this work, we will consider the 
mean squared difference between nodes in the TI and nodes in the realization (Figure 1).  The differences 
are weighted based on the distance of each node to the central node as in Mariethoz et al (2010) (Eq. 1). 
 

 (1) 
 

where ai is the inverse distance to the central node. 
 

The proposed improvement to this methodology is in the random selection of potential TI 
patterns.  Rather than randomly selecting a location in the TI to begin scanning, the TI is first sorted by 
value, and the nearest conditioning data in the realization (hereafter referred to as the reference node) is 
used to find better starting patterns to scan; consider the following TI (Figure 1).  The TI is sorted and the 
simulation begins by finding the TI patterns that are most similar to the reference node.  This is 
straightforward when the values in the TI have been sorted.  The TI is then scanned in order of difference 
with the reference node.  This requires very little additional memory; the TI is stored in sorted order with 
a pointer for each value pointing to the range of locations to scan in the TI.  The user can provide a 
threshold on the reference node or it can be taken as a fraction of the original tolerance. 

Consider the following example with the TI borrowed from Zeng et al (2006), one realization 
using Mariethoz et al (2010) and one realization with the 1D search method (Figure 3).  Two metrics are 
used to assess the models 1) the average pattern difference, recall the mean squared error is used to 
determine patter similarity, the average pattern difference is the average over all simulated locations 2) 
the CPU time.  Figure 4 shows that the proposed 1D search method generates realizations in less time 
with less error.  The various lines on the plots indicate different threshold parameters for the algorithms, 
which are identical for both implementations.  Note that the average pattern difference is important, 
three realizations with different average pattern differences are shown in Figure 5.  As the pattern 
difference is reduced, the realizations better match the features in the TI. 
 
Program 
The parameters for MPS_MDS are explained below.  Note that only one realization is currently generated 
with this program.  This will be modified in future releases.  Note that the intention is to use the parallel 
program (CCG paper #409 in report 12, 2010) in order to generate multiple realizations in parallel. 



Paper 105, CCG Annual Report 14, 2012 (© 2012) 

 105-3 

 
 
Line 1 - data file 
Line 2 - columns for the coordinates and value 
Line 3 - trimming limits on the variable to be simulated 
Line 4 - debugging level (not used currently) 
Line 5/6 – some debugging information, different depending on the MPS option selected 
Line 7 – simulation file output 
Line 8/9/10 – grid definition 
Line 11 – multi grid approach, similar to SGSIM 
Line 12 – number of previously simulated values to use, data are treated as identical to previously 
simulated values 
Line 13 – isotropic search radii for nearest neighbors 
Line 14 – for MPS option #1, this is the number of dimensions to use, ignored for other options 
Line 15 – MPS option to consider, Option 0 is to use Mariethoz’s implementation (as described above), 
Option 2 searches the entire TI for the best pattern (very slow, but the ideal simulation) Option 3 
considers the sorting and 1D search using the reference node approach described above.  Option 1 uses a 
multidimensional scaling embedding of the TI patterns and then a search in high-dimensional space.  This 
option does not work well and is not recommended. 
Line 16 – number of clusters, only used for option 1, ignore 
Line 17 – file with the TI 
Line 18 – size of the TI, the blocks are assumed to have the same dimension as the realization (i.e. the TI is 
at the same scale as the realization) 
Line 19 – random number 
Line 20 – user defined tolerance for pattern similarity.  This is not the average pattern similarity; it is the 
sum of the squared differences.  Using more data points will result in a larger squared difference.  
Moreover, if the maximum number of patters to check is reached, the TI pattern with the minimum 
difference is selected even though the threshold has not been reached 
Line 21 – when building the sorted lookup tree for determining the patterns to check, the tolerance on 
the reference node is used to determine which patterns will be checked.  This is highlighted in Figure 1 
where a tolerance of 0.1 is used.  The value required here is the absolute difference, not the squared 
difference. 
Line 22 – if the first pattern that is check is less than the tolerance, it may be beneficial to test a few more 
patterns.  The minimum number of patterns to check is defined for option 3 (not implemented in other 
techniques). 
Line 23 – it could be the case that the TI is not exhaustive.  In this case certain pattern points are dropped 
and the sum of the squared difference (Line 20) is modified to consider dropping nodes in the pattern.   
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Conclusion 
The proposed method shows promise for improving simulation results when considering MPS 

simulation with continuous variables.  The logical extension is to generate a 2D search where two points 
are used as reference nodes than just the nearest reference node.  This would significantly improve the 
algorithm in terms of CPU speed and average pattern error; however, the memory requirements of a 2D 
lookup table, rather than the 1D sort used here, would be large.   
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Figure 1: Left: Methodology for Mariethoz’s implementation. Right: Methodology for 1D search 
implementation. 
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Figure 2: Conditioning data to use in MPS.  No template is specified, the user provides the number of 
nearest conditioning data and previously simulated nodes to use. 
 
 

 
Figure 3: Left: TI. Middle: realization with data used, option #3 the 1D search. Right: Same tolerance 
parameters, but using option #0 the threshold implementation.  Average error for middle realization is 
1961 average error for right realization is 2831.  Time for middle realization is 225s and time for right 
realization is 333s. 
 
 

  
 
Figure 4:  Left: Times and errors using option #0. Right: Times and errors using the 1D search option #3.  
Lines represent different total number of patterns searched in the TI.  Points along the line are generated 
by lowering the pattern difference threshold. 
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Figure 5:  Three examples of realizations with different average pattern errors. 
 


