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Abstract 
Characterization of complex geological features and patterns has been one of the main tasks of geostatistics. MPS 
simulation is an increasingly common alternative based on training images that contain and relate complex 
relationship between data. Reproduction of the main features results from borrowing spatial statistics from 
training images. The current work proposes to use multiple training images by a data integration scheme known as 
the linear opinion pool. An advantage of utilizing more than one training image relies on the ability to capture 
distinct heterogeneities, variability and patterns. The algorithm was implemented inside the snesim code. CPU time 
and memory requirements are proportional to the number of training images used. 
 
Introduction 
Exploration of mineral deposits and petroleum reservoirs, and later their operation, involves several branches of 
geosciences such as geophysics, geochemistry and geology. All contribute with valuable information that leads to 
construction and modeling of complex geological features important for economic evaluation. One of the 
challenges of Geostatistics is characterized and assets the uncertainty of these underlying features. In the past, 
simulation techniques based on linear relationships and the benefits of Gaussian distributions has been able to 
give response to a large number of geological phenomena - especially in mining. However, a statistics relationship 
beyond two points is needed for those deposits with complex features and patterns, as the case of petroleum 
reservoirs. Multiple Point Statistics (MPS) simulation was developed to simulate and reproduce complex 
phenomena taking borrowed high order statistics relationships of the complex features and patterns from training 
images. It acts as the probability distribution function of reservoir, which is completely known. The method is 
based on the single normal equation proposed by Guardiano and Srivastava (1992). 

Several methods of MPS and important advances on practical applications have been developed since 
then. The snesim algorithm (Strebelle and Journel, 2000) popularized the use of MPS at reducing the excessive 
computer requirements implementing a search tree storage procedure. Also, a method that rests on simulate 
annealing was presented by Deutsch (1992). There are others proposed methods relied on Gibbs Sampler iteration 
(Srivastava, 1992; Lyster, 2007) and neural networks (Caers & Journel, 1998; Caers 2001). Ortiz (2003) introduced 
the integration of runs and indicator simulation to reproduce high order statistics.     

All MPS simulation may divide into two general class of algorithm. First, those that scan and storage the 
information from training images, and calculates the conditional probability in a sequential scheme. Second, those 
that start from a training image and converge to the final solution. Furthermore, most MPS algorithms have been 
mainly focused on categorical variables. The number of categories looked upon must be lower. An increment in 
the use of categorical variables will increase the problem on a large scale.  

MPS algorithms utilize training images for extracting specific geological patterns previously recognized. 
The training images replace the structural spatial tools based on two point statistics such as variogram and 
covariance–amply utilized in the mining industry nowadays– which considers only the linear relationship between 
data. Neither curvilinear nor specific patterns, involving more than two points, may be reproduced by basis 
algorithms on two-point statistics. As a response, the training image can summarize higher order statistics of the 
random function, including the variogram and covariance, allowing to MPS method to model more complex 
geological deposits. It reproduces the patterns and curvilinear relationship present on the training image. The 
advantage rests that the training image can be generated from a non-conditional simulation of an object-based 
algorithm or even simpler, a sketch with the main characteristic devised by a geologist. 

An advantage of utilizing more than one training image, at the same time, relies on the ability to capture 
distinct heterogeneities, variability and patterns. Even though some MPS method can account for multiple training 
images simultaneously, it looks for patterns into multiple different training images, rather acting as a big training 
image. Thus, the conditional probability is evaluated from the total number of replicates found on all training 
images. There is no manner to combine the conditional probabilities of each training image under this scheme. The 
current work proposes to extract the information from two or more training images, but combining the conditional 
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probabilities – calculated independently for each training image – and coming up with a new conditional 
probability that mixes the main patterns of each training image. It leads us to the paradigm of data integration 
from different sources. A weighted linear combination known as linear opinion pool is presented. It overcomes the 
conditional probability calculation issue from multiple training images.  
 
Integrating Multiple Training Images 
The most remarkable characteristic of Multiple Point Statistics is its simplicity. It relies on the single normal 
equation framework of a single-multiple point event (Journel, 1992). The purpose is to evaluate the conditional 
probability at location u of an attribute S(u) given a set of hard data {S(uα),α = 1, … , n}  using a n+1 single data 
event Dn(u).  

A data event Dn(u) depicts the specific spatial configuration of n conditioning hard data given by the set 
of vectors {hα,α = 1, … , n} centered at location u. It means that the number of replicated data event found on the 
training image will be accounted for evaluating the conditional probability. Now, consider a variable S(u) that may 
take K values from the set {sk, k = 1, … , K}, and the data event  Dm,n(u) associated to the training image m 
centered at location u and conditioned to hard data {S(uα),α = 1, … , n}. Then, the conditional probability at 
location u for a data event Dm,n(u) can be summarized as: 

Ρ�𝑆(𝑢) = 𝑠𝑘�𝐷𝑚,𝑛(𝑢)� =
Ρ(𝑆(𝑢) = 𝑠𝑘 ,𝐷𝑚,𝑛(𝑢))

Ρ(𝐷𝑚,𝑛(𝑢))
 

Hereafter, we can drop off the notation for location u on the conditional probability. Classical two-point 
geostatistical methods must simplify the lack of understanding of high order statistics by the assumption of 
stationarity. On the contrary, a training image establishes the relationship between more than two points acting as 
a multiple-point statistics source. Thus, denominator and numerator probabilities of expression (1) can be 
evaluated directly from the training images. However, set up a training image is not a simple step. Modeller must 
possess a high understanding of geological process which originated complex features.  

MPS is framed under sequential simulation methods. Each location is simulated conditionally to the data 
available and then converted in a hard data for the next simulating location. The algorithms proceed as follows: 

1. Visit an unsampled node 
2. Compute conditional probability of attribute 𝑠𝑘  according with data event 𝐷𝑛 
3. Add the simulated value as a hard data and moving to the next location 
4. Repeat the process for a new realization 

The size of data event Dm,n has direct implications on the reproduction of the main features of the training images 
over the final realization. A large data event probably will not find an enough replicates to estimate the conditional 
probability. On the contrary, a too specific data event will not capture the larger relationship between points. The 
size must ensure to capture the main features, but at the same time reduce the overload of computer 
requirements. 

The use of training images to modeling complex geological deposits have encouraged the setting up of 
extensively libraries containing its main features (Pyrcz, 2004). Some of them prioritizing smooth shapes with 
sinuous and curvilinear characteristics; whereas, other privilege an implicit randomness component. The fact is 
that in so far the modeller needs to combine certain shapes from different training images, he must construct - by 
“some” method - a new one trying to mimic and reproduce the features needed. This current work presents an 
alternative to evaluate conditional probabilities (1) mixing several training images by a weighted linear 
combination of conditional probabilities. Also, a brief review of data integration paradigm from different sources is 
treated. 

How to relate and incorporate the information that come from different sources for a post processing 
evaluation is not an easy step. On geostatistics, one of the challenges has been integrate information from 
categorical or continuous attributes by adding secondary information to improve the prediction and uncertainty of 
reservoirs (Hong, 2010). This work is focused on categorical outcomes from conditional probabilities integrating 
information from different training images.  

 
Again, consider a geological attribute sk taking a value k given m conditional training images with the 

same data event Dm,n configuration. The goal is to calculate the conditional probability: 
       Ρ�𝑠𝑘 = 𝑘�𝐷1,𝑛, … . . ,𝐷𝑚,𝑛�  

(1) 

(2) 
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Several approaches have been developed to facilitate the calculation of conditional probabilities with different 
assumptions. Two of them will be treated on this work. First, the probability combination scheme based on the 
interdependence between sources of information making possible the conditional probability inference by the 
Bayes relationship.  Second, the consensus theory – developed in the field of management science- considers the 
importance of weighting the expert opinion at combining the estimated conditional probabilities from each source 
of information (Winkler, 1968). There is a third avenue of data integration method known as multivariate density 
estimation, but this has a different background relied on the complete understanding of the conditional 
probability function by an analytical expression. 
 
Probability Combination Scheme Training Images Integration 
Strebelle and Journel (2000) stated the option to add soft information for evaluating primary information using the 
Bayes relationship for conditional probabilities. Training image of primary and soft data are considered as one 
vectorial training images where the data event scan both training images to inference expression (1). However, this 
work proposes to evaluate the conditional probabilities separately and combining them to obtain an expression as 
(2). Thus, from probability theory the conditional probability expression (2) may be expanded by the Bayes’ Law as 
follows: 

Ρ�𝑆 = 𝑠𝑘�𝐷1,𝑛, … . . ,𝐷𝑚,𝑛� =
Ρ�𝐷1,𝑛, … . . ,𝐷𝑚,𝑛�𝑆 = 𝑠𝑘� × Ρ(𝑆 = 𝑠𝑘)

Ρ�𝐷1,𝑛, … . . ,𝐷𝑚,𝑛�
 

Probability Ρ(S = sk) is the global proportion of attribute sk on all training images, Ρ�D1,n, … . . , Dm,n� is the joint 
probability of all training images and Ρ�D1,n, … . . , Dm,n�S = sk� is the likelihood. The solution of this would require 
knowing all the probabilities mentioned before. However, it is possible to assume the conditional independence 
between secondary data �D1,n, … . . , Dm,n�  given the primary data sk. Thus the likelihood may be discomposed in a 
linear product of Ρ�D1,n�S = sk� × … × Ρ�Dm,n�S = sk�, and expanding equation (3)  jointly with the Bayes’ Law, 
we have  

Ρ�𝑆 = 𝑠𝑘�𝐷1,𝑛, … . . ,𝐷𝑚,𝑛� =
Ρ�𝑆 = 𝑠𝑘�𝐷1,𝑛�
Ρ(𝑆 = 𝑠𝑘) × … ×

Ρ�𝑆 = 𝑠𝑘�𝐷𝑚,𝑛�
Ρ(𝑆 = 𝑠𝑘) × Ρ(𝑆 = 𝑠𝑘) × 𝐶 

Where C is a normalizing factor, which makes sure that expression (4) satisfies the closure property. As a 
consequence, the conditional probability given different training images may be expressed as a multiplication of 
conditional probabilities of each training image. The conditional probability Ρ�S = sk�Dm,n� is easily extracted 
from the training image m given the data event  Dm,n. 

Assume conditional probability under this scheme has some issues. Firstly, multiplication of conditional 
probabilities of each training images conducts to a non-convex solution. It tends to prefer the most informative 
conditional probability. Secondly, the final realization will be closely to the training image with the higher 
conditional probability. Finally, manipulation over conditional probabilities is not possible and the judgement of 
evaluator cannot be applied. Consensus theory proposes to overcome these issues weighting the importance of 
each training image according with some analytical or empirical criteria. 

 
Consensus Theory Training Images Integration  
Consensus theory assumes that each source of information, such as training images, is conditioned to the opinion 
of an expert, which may be subjective or forecasted from a model.  The challenge is combine and weighting 
distinct evaluated conditional probabilities with the same level of information according with the experts’s 
opinions. The way that the estimated probabilities are combined must be a consistent probability –values between 
0 to 1 – and satisfying the closure property. The easiest approach is allocate the weights between training images 
using linear combination scheme, it is known as linear opinion pool (Stone, 1961): 

Ρ�𝑆 = 𝑠𝑘�𝐷1,𝑛, … . . ,𝐷𝑚,𝑛� = �𝑤𝑖Ρ�𝑆 = 𝑠𝑘�𝐷𝑖 ,𝑛�
𝑛

𝑖=1

 

with wi ≥ 0 and  ∑ wi = 1n
i=1 . The problem is to quantify the weights wi for each training image according with 

the expert opinion, which may be based on expertise of the decision maker, calibrated by some previous 
mathematical model from the same data or simply weighting all the estimated probabilities with the completely 
proportions subject to the modeller experience, and thus, getting the output desired. 

(4) 

(5) 

(3) 
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The snesim algorithm was utilized to implant the linear opinion pool approach on the calculation of 
conditional probability. It is based on a dynamic data structure, called search tree, used to store the conditional 
probabilities evaluated from the training image. The search tree corresponds to a series of nodes linked where 
each node contains one specific conditioning data event. The data event must have at least one replicate to be 
considered a node of search tree. The main advantage of the algorithm is that the scanning process is performed 
only once and each repeated data event stored at the corresponding node.  

Implementation of linear opinion pool modified the original snesim code and adapted the search tree for 
multiple training images. Each training image has associated one search tree. The algorithm is exactly than MPS 
sequential simulation: (1) visit each node, (2) perform and storing on the search tree the conditional probability 
according with the data event Dm,n for the training image m, (3) combine the conditional probabilities of each 
training image using the linear opinion pool (5) subject to some weights previously calculated, (4) add the 
simulated value for be used at next location and (5) repeat the same process to generate a new realization.  

The source code and the executable file are provided in parallel with the paper in the same directory. The 
parameters are equivalent to the original version of snesim program. A brief description is presented. 

 

 
 
Lines 5 up to 8 are self-explanatory. Global proportion and the use of vertical proportions for simulating 

the codes are set up on lines 9, 10 and 11. Line 12 does reference to the servo system correction, which adjusts the 
final proportion to reach the target proportion of categories. From lines 12 to 19 the code read the parameters 
related with the name of output file, the number of realizations, origin and size of the grid  and the file with the 
template used up for calculating the conditional probabilities.  Lines 20,21 and 22 describe the estimation 
parameter such as number of samples, events and octants deemed. The number of training utilized by the 
methodology is established on line 23, and line 24 set up the partial proportion to be employed by each training 
image. From lines 25 to 30 set out the name of the file and the column of the training image, the size and the 
search ellipsoid. For each training image involved a new set of similar lines need to be written, that is the case of 
the second training image called “TI-SIS.out”. 

 
Example 
Synthetic examples are presented; however, it is necessary clarify that this work focuses on the paradigm of data 
integration between training images - relies on linear opinion pool- and not in the manner of calculating its 
weights.  First, a fluvial reservoir example is shown in Figure (1). Two training images are used, the first associated 
to a smooth fluvial reservoir Figure (1.A) and the second a training image contains a higher random component 
generated Figure (1.B) by Sequential Indicator Simulation (SIS). Figures (1.C-1.G) show realizations obtained from 
the conditional probability subjects to (5) using different weights.   
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A second example is developed with a turbidite reservoir training images Figure (2). The procedure is 
exactly the same, a second training image is created using SIS based on the variogram of the first training image. 
Figures (2.C-2.G) show the changes on realizations at combining the weights.   

To use a probability combination scheme as a source of integration of training images is a valid alternative 
too. Two examples show realizations using this scheme. The conditional probability is combined by (4). Although 
the training images are distinct, Figure (3.D) and Figure (4.D) represents a realization that is close to the smother 
training image. There is no option to manipulate any possible combination between training images neither by a 
linear combination nor by a special function calculated from the same data. It bounds the field of action of this 
training images integration scheme. 

In terms of CPU timing performance, the time is based on the original snesim code when using single 
training image. Thus,  the proposed algorithm is proportional to the number of training images used. The examples 
before used just two training images as sources to get conditional probabilities; however, the use of more than 
two is possible though unnecessary. For each realization are generated two search trees, one for each training 
image. Table – 1 shows a comparison between the time of the original snesim code and the proposed code. Using 
two training images the time for simulating a realization from tow training images is duplicated. 

In the case of RAM memory the performance is not so different. For the original snesim code, the amount 
of memory necessary to storage and simulate a block model of 256x256x256 using a training image of 
256x256x256 is approximately 500 MB. The fact of adding a new training image increase the use of CPU memory 
depending of the size of the training image; hence, use an additional training image entails to increase the memory 
on 130 MB associated to the storage search tree process and 330 MB as consequence to read and storage the 
information of the extra training images, which is almost twice the RAM used for one training image.  

 
Discussion and Conclusion 
A methodology to combine the conditional probabilities of distinct training images capturing the main features 
from each has been presented. A weighted linear combination of conditional probabilities known as a linear 
opinion pool is recommended. A second approach using a probability combination scheme was tested for a 
comparison.  The snesim code was modified with the algorithm; however, the methodology is extensible to any 
scanning and storing MPS algorithm. The computer requirements increase in direct proportion to the number of 
training images.  As future work, one of the most important things is to quantify the precise weight for each 
training image. 
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Block Model Snesim (min) Snesim-II (min) 
64x64x64 3 6.5 

128x128x128 17 36 
256x256x256 119 268 

Table 1: CPU time comparison 

 

  

 

 

 

 

 

 

  
Figure 1: Realizations using the linear opinion pool data integration approach for a fluvial reservoir 
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Figure 2: Realizations using the linear opinion pool data integration approach for a turbidite reservoir 
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Figure 3: Realizations comparison the linear opinion pool and probability combination scheme for data integration - 
fluvial reservoir  

             

 
 

  
Figure 4: Realizations comparison the linear opinion pool and probability combination scheme for data integration - 
turbidite reservoir  
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