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Missing Data Replacement in a MultiGaussian Context 
 

Ryan M. Barnett and Clayton V. Deutsch 
 

Unequally sampled data is an important challenge in geostatistics, as multivariate transforms may only be 
executed with equally sampled observations. To facilitate these transforms, observations not having the 
full suite of required variables are commonly excluded from the modeling workflow. While leading to the 
loss of information, this may also introduce a bias since there may be specific reasons for the missing data. 
A better option is to consider the replacement (or imputation) of missing data values, so that modeling 
may proceed with all of the sampled data. This missing data replacement must be done in a manner that is 
unbiased, while also reflecting uncertainty in the imputed values. As methods advocated by data 
replacement literature are not immediately suited for regionalized random variables, we aim to adapt 
them to the geostatistical analysis setting. Multivariate geostatistical analysis may be subset based on 
whether the multiGaussian assumption is reasonable after a normal score transformation. This will dictate 
which subsequent modeling and/or transformation methods are employed, in addition to what data 
replacement method is appropriate. The following paper will propose a Bayesian Updating technique for 
data replacement in the multiGaussian context, while its companion paper1 considers the complex 
multivariate setting. Following an overview of the available data replacement methods, the Bayesian 
Updating Data Imputation (BUDI) method is developed. Using a synthetic case study, very good results are 
demonstrated in terms of replacement accuracy and resultant gains in geostatistical model accuracy.  
 
Introduction 
A large variety of techniques are available for transforming multivariate data to be suitable for 
geostatistical modeling. A selection of these transforms and their purpose include: (i) logratios [1,11] for 
removing compositional constraints, (ii) SCT [1,11], MSNT [3], and PPMT [4] for removing non-linearity 
and heteroscedasticity, and (iii) PCA [1,9] and MAF [1,14] for removing correlation. Unfortunately, all of 
these transforms may only be executed on homotopically (equally) sampled observations. That is to say, 
any observations not containing the full suite of variables to be transformed may not be used in these 
techniques and the subsequent geological modeling workflow. 
 Consequently, when faced with observations that are missing any number of variables to be 
modeled, geostasticians must decide between either: (i) eliminating those observations from the 
modeling framework, or (ii), choosing a method for replacing the missing variable values. The obvious 
disadvantage to the first approach is the potential for drastically reducing the information that is available 
for global statistics and local conditioning. As stated by methodologists in the field of missing data 
replacement [8,16], this also makes strong assumptions of why data is missing in the first place, and could 
introduce a strong bias to the remaining data. Perhaps even more dangerous, however, is choosing a data 
replacement method that produces biased results, or does not reflect inherent uncertainty in the 
replaced values. Modern data replacement theory advocates methods that seek to address these 
concerns, providing unbiased missing data replacement with associated uncertainty distributions. The 
following study in conjunction with its companion paper1 [2] aims to adapt these advocated techniques to 
the field of geostatistics. 
 As the complexity of geologic data necessitates the use of differing modeling frameworks, so too 
will it motivate the use of varying data replacement techniques. Should the data be reasonably 
multivariate Gaussian (multiGaussian) following the normal score transform [1,6], linear modeling (e.g. 
co-simulation with the linear model of coregionalization [6]), or decorrelation (e.g. PCA/MAF [1,9,17]) 
may immediately proceed. This paper will develop a data replacement technique for this multiGaussian 
setting. On the other hand, if multivariate complexities are present, additional transforms such as those 
referenced at the top of this introduction may be necessary. The companion paper1 [2] deals with data 
replacement in this more complex multivariate setting. 

                                                                 
1 Barnett, R., & Deutsch, C. (2012). Data replacement in a complex multivariate context. CCG Annual 
Report 14. Paper 113. 
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 A brief overview of the available missing data replacement techniques will first be provided. 
Based on the recommendations of data replacement literature, and its suitability for geostatistical 
modeling frameworks, Multiple Imputation is selected from these available techniques. Multiple 
Imputation is then adapted to spatial variables through the use of the familiar Bayesian Updating [13] 
framework, to form the proposed Bayesian Updating Data Imputation (BUDI) technique. Accuracy of this 
method and the potential value it will contribute to a multivariate modeling framework is demonstrated 
on a synthetic case study. This value gained may be calculated analytically in a multiGaussian setting, 
which is presented in Appendix 1. Parameters for the BUDI software package are presented in Appendix 2. 
 
Data Replacement Methods 
As outlined by Enders [7], missing data replacement enjoyed a surge in methodology development during 
the 1970’s with the publication of its two primary “state of the art” methods, maximum likelihood [5] and 
multiple imputation [15]. A general theoretical framework for missing data replacement [14] was also 
published during that decade, which continues to see wide spread use. Generally speaking, 
methodologists in this field seek to replace (or impute2) data in a manner that minimizes bias, and 
provides an accurate distribution of uncertainty.  Many methods are practically employed for missing data 
replacement [7,16], regardless of whether they are theoretically refuted. A selection of these are 
summarized below in a geostatistical context (a further subset is visually demonstrated in Figure 1): 

• Listwise Deletion: delete any sample that does not have all variables present. 
• Arithmetic Mean Imputation: replace missing values with the stationary mean of that variable. 
• Regression Imputation: determine a regression based model for missing variables based on 

secondary correlated variables. Then use the collocated secondary variables to impute the 
missing values. 

• Stochastic Regression Imputation: the same as regression imputation, but apply random 
generation methods such as MCS [7] to add realistic variability to the regression model 

• Hot-deck Imputation: randomly replace missing values with data values of other samples that 
measure similarly according to colocated secondary variables. 

• Similar Response Pattern Imputation: also known as nearest neighbour hot-deck imputation. The 
random selection is more restricted based on additional factors such as spatial considerations. 

• Last Observation Carried Forward: the name is derived from its application in time series analysis. 
The spatial equivalent would simply be nearest neighbour imputation. 

• Maximum Likelihood Estimation: model parameters (e.g. mean and variance) of a distribution are 
estimated to maximize the log-likelihood of each observation occurring. In missing data analysis, 
these parameters are estimated through iterative optimization using various subsets of the data. 

• Multiple Imputation: apply methods such as stochastic regression imputation repeatedly to 
generate multiple realizations of the data. 

 
In narrowing down the available choices, it is worth noting that data replacement methodologists [7,16] 
advocate the use of either maximum likelihood and multiple imputation due to their unbiased estimates 
and associated distributions for uncertainty. These are very attractive properties that will be necessary of 
any geostatistical data replacement method. Multiple imputation is likely the more immediately suitable 
to geostatistics of the two techniques, as it will form multiple realizations of the data. These data 
realizations may be used for generating multiple geostatistical model realizations, allowing for seamless 
integration into popular simulation frameworks. Log-likelihood methods will estimate model parameters 
rather than the missing data itself, making it comparatively difficult to integrate with subsequent 
geostatistical modeling.  
 

                                                                 
2 Rather than the word replace, missing data methodologists prefer the word impute. Replace and impute will be 
used interchangeably throughout this paper, in order to maintain consistency with the literature where required. 
From the Oxford English Dictionary: “Impute - to assign a value to something by inference based on the value of the 
products or processes to which it contributes”. 
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Bayesian Updating Data Imputation (BUDI) 
Multiple Imputation can be conceptualized based on the stochastic imputation panel of Figure 1, where 
regression is performed, before sampling stochastically from the conditional distribution. Adapting this to 
a geostatistical setting, a method will be required for inferring this conditional distribution. This method 
should take advantage of the spatial correlation of a missing variable that is to be imputed, in addition to 
any correlated and collocated secondary variable(s). 
 As this study works in a multiGaussian setting, Bayesian Updating may be appropriately applied 
to construct the conditional distributions at every location and variable requiring imputation. Bayesian 
Updating is a powerful method for integrating primary and secondary information into the construction of 
a regionalized random variable’s local conditional distribution. Readers are referred to Ren’s PhD thesis 
[13] for a full development of Bayesian Updating methodology, which the following outline of essential 
theory will follow. Working with normal scores of the original data [1,6], an arbitrary variable being 
imputed is termed the primary, while the collocated and correlated sampled variables are considered the 
secondary. The Bayesian Updating workflow is then given by the following steps and visually presented in 
Figure 2. 
 
Prior Distribution  
At location u requiring imputation, estimate the primary distribution mean, ( )Py u , and variance, 2 ( )Pσ u , 
according to Equations 1 and 2 respectively. Here, weights, iλ , are calculated based on the covariance 
between the location u and the location ui of the ith sample (Equation 3). This amounts to using the 
normal equations to perform simple kriging based on correlated surrounding samples of the primary 
variable (consider kt3d [6] in cross-validation mode). 
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Likelihood Distribution  
Next, estimate the likelihood distribution mean, ( )Ly u , and variance, 2 ( )Lσ u , according to Equations 4 and 
5 respectively. Here, weights, iλ , are calculated based on correlation between the variable y and the 
colocated ith variable xi (Equation 6). This amounts to using the normal equations to perform linear least 
squares regression based on correlated and colocated secondary variables (consider likelihood_di -
Appendix 2).  
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Updated Distribution  
Finally, merge the prior and likelihood distributions to form the posterior or Updated mean, ( )Uy u , and 

variance, 2 ( )Uσ u , according to Equations 7 and 8 respectively. As a Gaussian distribution is fully defined by 
its mean and variance [10], the missing value now has its full distribution of uncertainty defined based on 
the spatially correlated primary variables (prior), and the correlated/colocated secondary variables 
(likelihood) (consider update_di - Appendix 2). 
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Stochastically Simulate 
Once the above steps are executed for every missing value in a dataset, stochastically simulate the data 
realizations by randomly sampling from the empirical Gaussian CDF’s defined by each imputed value’s 

( )Uy u  and 2 ( )Uσ u . Keep in mind that for every realization of the data, actual sampled values remain 
constant (0 uncertainty), while imputed values will vary based on the degree of uncertainty in its Updated 
distribution, 2 ( )Uσ u  (consider busim_di - Appendix 2).  
 
Case Study 
The BUDI methodology will be demonstrated on a synthetic case study. Exhaustive True synthetic models 
are first generated, creating five correlated multiGaussian variables of varying spatial continuity, from 
which 283 homotopic observations are sampled (Figure 3). From these 283 samples, 30 observations of 
each variable are independently and randomly selected for removal (Figure 4). This results in a dataset of 
174 complete observations, with 109 that are incomplete to varying degrees. The scatterplots of all five 
variables following this data removal are displayed for these sampled observations in Figure 5, before and 
after normal score transformation. While not perfectly multivariate Gaussian, this normal score data is 
illustrative of what may be considered reasonably multivariate Gaussian, allowing for BUDI to be 
appropriately applied. Note that perfect multivariate Gaussianity would enhance BUDI results.  
 The BUDI workflow is applied next to form 100 realizations of complete data. As outlined, the 
quality of these imputed values will largely be a function of the variable’s spatial continuity (Figure 3), and 
its degree of correlation with the secondary variables (Figure 5). Following the generation of these data 
realizations, the imputed values may be compared with the removed True values for cross-validation 
(Figure 6).  Observe in this figure that the mean and variability of these imputed realizations is unbiased 
and accurate when compared to the True removed samples. 
 The question arises of whether this effort of data replacement is justified by a measurable gain in 
the quality of modeling results. While this may be studied analytically since the replacement is taking 
place within the multiGaussian domain (Appendix 1), a more intuitive demonstration will be presented 
using the above data realizations. Identical geostatistical modeling workflows will be executed with and 
without the use of data replacement. That is to say, one workflow will use the data replacement 
realizations attained above, while the other will eliminate the incomplete samples (necessary so that a 
decorrelation transform may be applied). Comparing the resultant geostatistical models with and without 
data replacement to the True model from which the samples were originally drawn (Figure 3) will provide 
an indication of value gained from the BUDI replacement. 
 Dealing first with details of the modeling workflow, the 100 data realizations are individually MAF 
[1,17] and normal score [1,6] transformed to form independent Gaussian variables. These 100 data 
realizations are used to condition an SGSIM [6] based simulation of 100 models, which are then back-
transformed. An identical modeling workflow is then executed using a single dataset, where incomplete 
observations have been eliminated so that MAF may be applied.  
 Next, to ascertain the value gained in terms of local accuracy, E-Type estimates are formed from 
the 100 realizations of the two modeling workflows (Figure 7) and compared with the True model (Figure 
3). This comparison displayed uniformly better results for the workflow involving data replacement, which 
is summarized by Table 1 according to the MSE and Covariance improvement (as compared to the True 
model). In addition to maps of the E-Type estimates, Figure 8 also displays (i) E-types of the imputed 
realizations at the removed data locations, (ii) True values at the removed data locations, and (iii) a 
comparison between the E-Type models based on data replacement and data elimination. Note from this 
figure that while data replacement has improved quality of the estimates overall, poorer local estimates 
will inevitably occur in regions where there is poor data imputation. Cross-referencing poorly imputed 
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locations with the True map in Figure 3, it is unsurprising that they generally occur in regions where the 
missing value was fairly unrelated to its spatially surrounding samples. This would lead to an inaccurate 
prior distribution. 
 
Table 1: Improvement in the MSE and covariance of E-Type estimates vs. the True model (using data 
replacement realizations rather than data elimination).  

Variable 
% Improvement  

Mean Squared Error Covariance 

1 27.73 20.19 

2 13.36 23.56 

3 12.17 13.94 

4 16.09 3.70 
5 9.54 36.42 

 
 
Conclusion 
The replacement of missing data is very important for multivariate geostatistical modeling with unequally 
sampled data. It allows for the application of multivariate transforms to a potentially far greater number 
of observations, providing the subsequent modeling workflow with additional information for local 
conditioning and global statistics. Following the outline of a number of available data replacement 
techniques, multiple imputation was selected based on its theoretical properties and suitability within 
geostatistical frameworks. After being adapted to geostatistics through Bayesian Updating, multiple 
imputation was demonstrated on a multiGaussian synthetic case study. A high degree of accuracy was 
seen in the uncertainty distributions of the imputed data using this technique. This imputed data was 
demonstrated to greatly improve the geostatistical modeling accuracy, as compared to a parallel 
workflow that used data elimination. A note on the analytical approximation of value gain in a 
multiGaussian setting is provided in Appendix 1, while the BUDI software package is given in Appendix 2. 
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Figure 1: Simplified example of missing data replacement with multiple techniques [8]. 
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Figure 2: Visual schematic of the Bayesian Updating process [13]. 

 
Figure 3: Synthetic true models, with circles indicating the locations of 283 homotopic samples. 

 
Figure 4: Locations of randomly removed observations for each variable. 
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Figure 5: Scatterplots of the sampled observations before (bottom covariance triangle) and after (upper 
covariance triangle) normal score transformation.  

 
Figure 6: Comparison between removed True values (y-axis) and the associated 100 realizations of 
imputed values (x-axis). 
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Figure 7: E-type estimate maps for the five variables, as constructed from the data with (left) and without 
(middle) data replacement. These two maps are compared to the True model (Figure 3) in the far right 
column, where accuracy improvements in the E-type estimate from data replacement is indicated by red, 
while estimates which are better without data replacement are indicated by blue. Circle values in these 
maps display the mean of imputed value realizations (left), True removed values (middle), and mean 
minus True (right). 
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Appendix 1: Analytical Value Gained from Data Replacement 
While illustrative, the value gained from data replacement need not be determined numerically in the 
multiGaussian setting. Consider that the accuracy of a multiGaussian simple co-kriging estimate may be 
approximated by its kriging variance 2

SCKσ . Using a simple bivariate setting consisting of two variables Z1 
and Z2, suppose that Z1 is fully sampled at N number of observations, while Z2 is only sampled in a 
smaller subset, n number of observations. The value gained from data replacement, as measured by the 
reduction in MSE may then approximated according to Equation 9.   
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The value gained from data replacement for the Z1 variable estimation (based on greater secondary 
conditioning information from the replaced Z2) is given by equation 10, which reduces to Equation 11. 
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The value gained from data replacement for the Z2 variable estimation (based on greater condition 
primary information from the replaced Z2) is given by equation 12, which reduces to Equation 13. 
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Appendix 2: BUDI Software Package 

The Bayesian Updating Data Imputation (BUDI) software package is very closely adapted from the original 
Bayesian Updating FORTRAN software developed by Clayton Deutsch and Weishan Ren for geostatistical 
modeling. Primary differences from the original code include input files, formats, and parameters, as well 
as the output files and formats. The first BUDI program is likelihood_di, which is used for estimating 
the likelihood distribution. Parameters are displayed in Figure 9 and given below: 

• outfl: output file containing the likelihood mean and variance for every location requiring 
imputation of the primary variable (s) 

• nvar: total number of variables (primary + secondary) 
• corrfl: input  file containing the correlation between every variable at every location 

requiring imputation. Correlation is defined at every location because the program adopts 
locally varying correlation [13] methodology 

• tmin,tmax: trimming limits that are applied to all variables 
• npred: number of primary variables to be predicted 
• pvar(i), i=1,…,npred: location(s) of the primary variable(s) to be predicted in the corrfl 
• gridfl: input file containing data values of the secondary variables 
• ndata: number of secondary variables 
Repeat the following line for i=1,…,ndata 
• dvar(i),dcol(i): location of the ith secondary variable in the corrfl (dvar(i)) and gridfl (dcol(i)) 

respectively 

 
Figure 8: Parameter file for the likelihood_di program. 

 
The second BUDI program is update_di, which is used for estimating the updated distribution. 
Parameters are displayed in Figure 10 and given below: 

• priorfl: input file containing the prior mean and variance for every location requiring 
imputation of the primary variable. This file may be formed using cross-validation mode in 
kt3d [6] 

• icprm,icprv: columns in  priorfl for the prior mean and variance  
• likefl: input file containing the likelihood mean and variance for every location requiring 

imputation of the primary variable. This file is formed using likelihood_di 
• iclim,icliv: columns in  likefl for the likelihood mean and variance  
• outfl: output file containing the updated mean and variance 
• tmin,tmax: trimming limits that are applied to all variables 
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Figure 9: Parameter file for the update_di program. 

 
 

The third BUDI program is busim_di, which is used for simulating datasets based on sampled data and 
updated distributions. Parameters are displayed in Figure 11 and given below: 

• datafl(1): input file containing the original normal score values and any other data that may 
be of interest (e.g. coordinates). It is this file that will be made into realizations, where 
missing values are imputed 

• nvar: number of variables requiring imputation  
• icol(i),i=1,…,nvar: column locations within datafl(1) for the variables to be imputed 
• tmin,tmax: trimming limits that will determine which values are missing and requiring 

imputation 
Repeat the following line for i=1,…,nvar 
• datafl(i): input file containing the updated distribution for the ith variable to be imputed. It is 

assumed the mean and variance reside in the first and second column respectively  
• nreal: number of realizations of the data that should be generated  
• ixv(1): random number seed  
• outname: prefix name (may include a directory) for the output data realizations. This prefix 

will have the realization number and ‘.out’ appended to form the final name of each file 
• indfl: output file containing a binary indicator classification of whether a data value was 

imputed (1) or not (0) 

 
Figure 10: Parameter file for the busim_di program. 
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