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Missing Data Replacement in a Complex Multivariate Context 
 

Ryan M. Barnett and Clayton V. Deutsch 
 

While a challenge in the multiGaussian context1, unequal sampling poses a much larger issue for the 
geostatistical analysis of complex multivariate data.  Relative to reasonably multiGaussian data, complex 
multivariate data will more frequently motivate the use multivariate transforms to facilitate Gaussian 
based modeling. As these transforms may only use observations that are equally sampled, either data 
replacement or data elimination must be considered for the incomplete observations. Considering 
information loss and the potential for bias, data replacement rather than elimination is advocated by 
missing data methodologists. A companion paper1 provided an overview of data replacement motivation, 
methodology, and common techniques, before demonstrating excellent results with a data replacement 
method for multiGaussian data. The following work will build on this previous study, proposing a potential 
method for data replacement in a complex multivariate context. A brief conceptual overview of this Gibbs 
Sampling Data Imputation (GSDI) method is provided, along with a synthetic case study for demonstration. 
While promising results are seen with GSDI, this exploratory work leaves room for a great deal of future 
research and improvement, as will be discussed throughout. 
 
Introduction 
A large variety of techniques are available for transforming complex multivariate data to be suitable for 
Gaussian based geostatistical modeling, including logratios [1,11], SCT [1,10], MSNT [4], and PPMT [5]. As 
these transforms may only be executed on equally sampled observations, incomplete observations must 
be eliminated from the modeling framework, or have their missing values replaced (imputed2). Obvious 
disadvantages exist for data elimination, as it may drastically reduce the information that is available for 
global statistics and local conditioning. As stated by methodologists in the field of missing data [8,13], this 
also makes strong assumptions of why data is missing in the first place, and could introduce a strong bias. 
A data replacement method that produces biased results, or does not reflect inherent uncertainty in the 
imputed values is no less dangerous.  
 With this in mind, the field of missing data theory [8,13] has focused on developing methods for 
unbiased data replacement that provide accurate uncertainty distributions for the imputed values. 
Following an overview of these data replacement methods by this study’s companion paper1 [2], Multiple 
Imputation was selected for geostatistical applications due to its natural suitability within spatial modeling 
frameworks. The basic notion of Multiple Imputation in a geostatistical modeling context, is to construct 
representative conditional distributions at every location (and for every variable) requiring replacement. 
Simulating based on these conditional distributions will then generate multiple realizations of the data, 
which may then be used for conditioning geostatistical simulation.  
 As the complexity of geologic data necessitates the use of differing modeling frameworks, so too 
does it motivate the use of varying data replacement techniques. If the data is not reasonably multivariate 
Gaussian (multiGaussian) following the normal score transform [1,7], the Bayesian Updating Data 
Imputation (BUDI) replacement method developed in the companion paper [3,12] will not be 
appropriately applied. The following study will introduce a data replacement technique for the complex 
multivariate setting.  
 When considering the imputation of missing data for a regionalized variable3, its conditional 
distribution of potential replacement values may be infered based on (i) the values of spatially correlated 
samples of the same variable and (ii) the values of colocated and correlated secondary variables. 
Constructing conditional distributions from these two sources is well defined in the multiGaussian setting 
                                                                 
1 Barnett, R., & Deutsch, C. (2012). Data replacement in a multiGaussian context. CCG Annual Report 14. Paper 112. 
2 Rather than the word replace, missing data methodologists prefer the word impute. Replace and impute will be 
used interchangeably throughout this paper. From the Oxford English Dictionary: “Impute - to assign a value to 
something by inference based on the value of the products or processes to which it contributes”. 
3 Working for now under the Markov model where colocated secondary data screens the effect of spatially correlated 
secondary data [7] 
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with methods such as cokriging [7] and Bayesian Updating [3,12]. Unfortunately, its construction is not 
nearly so straightforward in the complex multivariate setting. A potential method is presented for 
constructing and sampling a variable’s conditional distribution based only on the colocated and correlated 
secondary variables. This leaves to future study, the very important task of integrating spatially related 
values of the same variable into the construction of these conditional distributions.  
 The conditional distributions will be determined using kernel density estimation (KDE), which are  
iteratively sampled within a Gibbs sampling style framework for multiple imputation. Following a brief 
overview of the essential Gibbs sampling theory, this closely related data replacement algorithm will be 
quickly developed. The accuracy of its imputed results will be demonstrated in a synthetic case study, 
along with the potential value it adds to subsequent geostatistical modeling. Parameters for the 
associated gsdi program are presented in the appendix. 
 
Gibbs Sampling  
The Gibbs sampler [6,9] is a widely applied method that allows for random variables of a multivariate 
distribution to be simulated without requiring the joint or marginal densities. Following the theory given 
by Casella and George [6], suppose one is interested in sampling from a bivariate distribution composed 
of Y1 and Y2 random variables. The Gibbs sampler iteratively draws random values for each variable, 
forming what is called the Gibbs sequence as seen in Equation 1. Here the subscript represents the ith 
Gibbs sample. 
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After specifying the starting value as 1 1
0 0Y y= , the Gibbs sampler iteratively draws the remaining values 

from conditional probability distributions, that are formed based only on the value of the previously 
sampled random value. In the bivariate case of Y1 and Y2, this conditional sampling is represented by 
Equation 2. 
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Given a long enough sequence, the Gibbs sampled distributions of Y1 and Y2 will become statistically 
representative of the True Y1 and Y2 distributions [6]. The generalized multivariate representation of 
Equations 1 and 2 for k number of variables is given by Equations 3 and 4 respectively. It is truly 
remarkable that such a simple algorithm possesses these remarkable convergence properties. For 
additional Gibbs sampler background and convergence proofs, interested readers are referred to 
excellent sources including the Geman and Geman paper that led to its widespread use [6,9].  
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Gibbs Data Imputation 
Returning to the task of missing data replacement, it is clearly attractive to impute values with an 
algorithm such as the Gibbs sampler, since it reproduces the underlying multivariate distribution. 
Particularly in cases where little information is available to condition the imputation of multiple variables, 
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it would be ideal for realizations to converge towards the stationary joint distribution of the data. 
Modifications to the original Gibbs sampling algorithm will be necessary, however, since observations 
with missing variables to be imputed (e.g. Gibbs sampled) have additional information that should not be 
left to random simulation. Applying the Gibbs sampler in its original form, where all variables are 
iteratively sampled according to Equation 3, would fail to reflect that certain variables at each location will 
have True values already sampled.  
 Consider the imputation of a single observation, where p number of variables have been sampled 
from the total k number of variables. Treating these sampled (fixed) variables as Y1,…,Yp, Gibbs sampling 
represented by Equations 3 and 4 above, are modified to Gibbs Sampling Data Imputation (GSDI) in 
Equation 5 and 6 below. Here, each Gibbs sampling sequence is effectively restricted to the p+1 through k 
variables, since the remaining variables are fixed on every iteration to their True sampled values.  
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While this does not form an actual Gibbs sampling sequence, the imputed variables will now have their 
sampling restricted to a multivariate space that is likely to be far more representative of the True missing 
value (since the space is restricted based on their colocated and correlated secondary variables). In the 
most extreme case of this restricted multivariate space, when p is equal to k-1, only a single conditional 
distribution will be formed and repeatedly sampled. Everything else being equal, the resulting uncertainty 
distribution will be relatively narrow since this single conditional distribution is so well conditioned. 
Moving to the case where p is equal to k-2, the GSDI will sample from a restricted plane within the greater 
multivariate space. In the most extreme case of unrestricted space, p is equal to 1, meaning that the GSDI 
will be free to sample from the (k-1)-variate joint distribution. Although a high degree of uncertainty is 
likely to be seen in the resultant imputed realizations, no bias should result from the GSDI in these poorly 
conditioned cases so long as the provided multivariate distribution honors the standard first and second 
order stationarity assumptions [7].  
 
Kernel Conditional Distributions 
In order to execute GSDI on complex geologic data, a method will be required for inferring the non-
parametric conditional distributions in Equation 6. A new but promising non-parametric Gibbs sampling 
algorithm gmv_sample [2] will be adapted for this purpose, where the conditional distributions are 
formed based on kernel density estimation (KDE). As KDE is only used for estimating discretizations of the 
iterating conditional distribution vectors, rather than a full multivariate grid, this algorithm allows for the 
efficient Gibbs sampling of massively multivariate data. Reader’s are referred to the original paper for 
additional details of the algorithm [2], as only essential points that will impact the implementation and 
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results of this GSDS adaption are discussed. Following the original paper[2],  important considerations for 
this data imputation application will include: 

• It is recommended that the algorithm be executed on normal scores of the original data, due to a 
variety of reasons including standardized units and marginal Gaussian form.  Gibbs samples may 
then be back-transformed to original space.  

• Results will be very sensitive to user input parameters including kernel bandwidth and 
correlation (option for it to be orthogonal or based on the normal score data covariance matrix). 
Testing various ranges of the parameters and selecting the results that best match user 
knowledge of the data is advocated for now. 

• A fairly rudimentary method is currently used for extracting observations from the Gibbs 
sequence. More robust starting locations and sampling extraction methods will be tested in the 
future which could lead to superior final convergence results. 

• Overall, excellent reproduction of the marginal and joint densities were observed with the 
algorithm based on initial testing. The largest concern, however, was that a variance inflation 
(~10%) was observed in the Gibbs sampling results relative to the original data. The cause has not 
yet been determined. 

As this Gibbs sampling algorithm will form the engine of GSDI, all of the shortcomings listed above are 
very likely to have a negative impact on data replacement results. Likewise, future improvements that are 
anticipated in the gmv_sample algorithm should have a positive effect in this application. 
 
Case Study 
The GSDI methodology will be demonstrated on a synthetic case study using the gsdi program 
(appendix). Exhaustive True synthetic models are first generated, creating five variables of varying spatial 
continuity, from which 283 homotopic observations are sampled (Figure 1). From these 283 samples, 30 
observations of each variable are independently and randomly selected for removal (Figure 2). This results 
in a dataset of 172 complete observations, with 111 that are incomplete to varying degrees. The 
scatterplots of all five variables following this data removal are displayed for these sampled observations 
in Figure 3, before and after normal score transformation. Observe that despite marginal Gaussianity, this 
normal score data possesses strong non-linear features that would prevent the correct application of 
multiGaussian modeling (e.g. co-simulation [7]), or multiGaussian data replacement (e.g. BUDI [3]).  
 The gsdi program is applied next to the normal score data, forming 100 realizations of 
complete normal score data. Figure 4 displays scatterplots of the normal score data, with the 100 
realizations of imputed values overlain. Note that the realizations forming ‘stripes’ across these 
scatterplots are the observations where only a single value must be imputed (the most common case). 
Since the remaining four variables are sampled and therefore fixed, only a single conditional distribution 
is constructed for sampling.  In the remaining cases, where more than one value is missing from an 
observation, the Gibbs sequence is free to explore a multivariate space that is free in at least two 
dimensions, forming ‘clouds’ of imputed values. To provide a better indication of whether these Gibbs 
sequences honor the underlying multivariate distribution, scatterplots with 1000 imputed realizations are 
also displayed in Figure 4. Plots with this greater number of realizations suggests that the Gibbs 
sequences do honor the apparent concave hull of the underlying joint distribution.  
 To provide additional insight into the accuracy of the conditional distributions formed by the KDE 
method, arbitrary locations are chosen for displaying the conditional distributions, with their associated 
True values overlain. Recall that these True values were previously removed in the case of the 
variables/locations now requiring imputation, as seen in Figure 2. Figure 5 displays the conditional 
distribution where only one value is missing, while Figures 6 and 7 have two and three values missing 
respectively. Observe that the True values fall directly on the conditional distribution vector in the case of 
one missing value (Figure 5), since these are all known samples to the algorithm (excepting the one 
variable being imputed). It is also encouraging to see in this figure, that the relatively tight conditional 
distribution appears to nearly converge on the True removed value. This contrasts with Figures 6 and 7, 
where the location of the conditional distribution vectors do not always coincide with the True values 
since they are not entirely fixed based on sampled values. Likewise, their generated conditional 
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distributions are not always representative of the True removed value. Keep in mind, however, that unlike 
in Figure 5, these conditional distributions will change on every iteration, since the Gibbs sampling is 
exploring more than one dimension of the multivariate space.  
 Following back-transformation, the imputed realizations may be compared with the removed 
True values to judge whether the results are unbiased and accurate (Figure 8).  While the mean of the 
realizations is relatively unbiased, it raises some concern that there is an overall inflation in variance. As 
this was a noted issue with the gmv_sample algorithm (anticipated to be resolved), however, it is 
attributed for now to the construction of these kernel based conditional distributions rather that the GSDI 
concept itself.  Another observation from Figure 8, is the relatively weak correlation between the True 
removed data and the imputed realizations. One would hope to see greater correlation, indicating greater 
overall accuracy in the realizations. This is not necessarily surprising, however, as when comparing these 
results to their superior BUDI equivalent [3], one must consider that no information has yet been 
integrated for spatially correlated values of the same variable. Further, BUDI works with data that is far 
more behaved, and therefore is likely to represent the best potential results that could be hoped for in 
this complex multivariate setting.  
 Based on the above observations, the use of these data realizations in a geostatistical modeling 
framework are not necessarily expected to lead to measurable accuracy gains (as compared to 
geostatistical modeling with data elimination).  Nevertheless, identical geostatistical modeling workflows 
will be executed with and without the use of data replacement. That is to say, one workflow will use the 
data replacement realizations attained above, while the other will eliminate the incomplete samples 
(necessary so that a multivariate transform may be applied). Comparing the resultant geostatistical 
models with and without data replacement to the True model from which the samples were originally 
drawn (Figure 1) will then provide an indication of value gained from the GSDI replacement. 
 Dealing first with details of the modeling workflow, the 100 data realizations are individually 
PPMT [5] transformed to form independent Gaussian variables. These 100 data realizations are used to 
condition an SGSIM [7] based simulation of 100 models, which are then back-transformed. An identical 
modeling workflow is then executed using a single dataset, where incomplete observations have been 
eliminated so that PPMT may be applied.  
 Next, to ascertain the value gained in terms of local accuracy, E-Type estimates are formed from 
100 realizations of the two modeling workflows and compared with the True model. This comparison 
displayed uniformly better results for the workflow involving data replacement, which is summarized by 
Table 1 according to the MSE and Covariance improvement (as compared to the True model). Though this 
modeling improvement is not as substantial as the BUDI case study [2], they remain quite significant when 
considering the modest accuracy of the imputed data realizations according to Figure 8.  
 
Table 1: Improvement in the MSE and covariance of E-Type estimates vs. the True model (using data 
replacement realizations rather than data elimination).  

Variable 
% Improvement  

Mean Squared Error Covariance 
1 11.20 13.96 
2 3.16 13.71 
3 2.69 18.71 
4 4.26 57.75 
5 2.52 31.03 

 
Conclusion 
The replacement of missing data is important for multivariate geostatistical modeling in a complex 
setting. A companion paper selected Multiple Imputation as a suitable general method for data 
replacement in geostatistical frameworks. Multiple Imputation was then adapted to complex data in this 
study, using a modified version of the Gibbs Sampling algorithm. Using a synthetic case study for 
demonstration, reasonable accuracy was seen in the uncertainty distributions of the imputed realizations. 
In spite of these modest results, the imputed data was demonstrated to greatly improve geostatistical 
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modeling accuracy, as compared to a parallel workflow that used data elimination. As this initial algorithm 
is only based on colocated and correlated secondary data, a great deal of improvement is expected to 
result from the future integration of spatially correlated values of the same variable. Additionally, the 
non-parametric Gibbs sampling algorithm at the core of this data imputation method has several 
identified avenues for implementation improvement. Improvements to the algorithm will likely impact 
this data replacement application in a large and positive manner. Parameters for the gsdi program are 
provided in the appendix. 
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Figure 1: Synthetic true models, with circles indicating the locations of 283 homotopic samples. 

 
Figure 2: Locations of randomly removed observations for each variable. 
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Figure 3: Scatterplots of the sampled observations before (bottom covariance triangle) and after (upper 
covariance triangle) normal score transformation. 
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Figure 4: Scatterplots of the sampled observations and imputed observations for 1000 realizations 
(bottom covariance triangle) and 100 realizations (upper covariance triangle). 

 



Paper 113, CCG Annual Report 14, 2012 (© 2012) 

 113-10 

 
Figure 5: Conditional distribution (the only one that will exist) for an observation missing a single value. 

 

 
Figure 6: Conditional distributions for an observation missing two values. 
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Figure 7: Conditional distributions for an observation missing three values. 
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Figure 8: Comparison between removed True values (y-axis) and the associated 100 realizations of 
imputed values (x-axis). Summary comparison statistics are provided in the enclosed table. 
 
Appendix: GSDI Program 
Parameters for the Gibbs Sampling Data Imputation gsdi program are in Figure 9 and given below: 

• datafl: input file containing the original normal score values. It is this file that will be made into 
realizations, where missing values are imputed 

• nvar: number of variables requiring imputation  
• icol(i),i=1,…,nvar: column locations within datafl for the variables to be imputed 
• tmin,tmax: trimming limits that will determine which values are missing and requiring imputation 
• nreal: number of realizations of the data that should be generated  
• nloc,bandw: number of discretizations for the conditional distributions, and size of the kernel 

bandwidth as applied in all dimensions 
• seed: random number seed 
• outname: prefix name (may include a directory) for the output data realizations. This prefix will have 

the realization number and ‘.out’ appended to form the final name of each file 
• indfl: output file containing an indicator of whether a data value was imputed (1) or not (0) 

 
Figure 9: Parameter file for the gsdi program. 


