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Centerline Extraction with Fast Marching Methods 
 

Maksuda Lillah and Jeff Boisvert 
 

Determining the orientation of elongated geological bodies can be important.  A fast marching technique 
for centerline determination, and subsequent orientation generation, is explored.  The immediate 
application is for channel centerline extraction for use in geostatistical property modeling accounting for 
locally varying anisotropy.  Typically, such channels are generated with multiple point statistical 
techniques and channel centerlines are not known.  When generating property models with these facies, 
properties such as porosity should conform to the channel as well.  The method explored can be used to 
determine centerlines of geological bodies. These centerlines can then be used as input point data for the 
generation of exhaustive maps of anisotropy necessary for many geostatistical techniques that explicitly 
incorporate locally varying anisotropy.  
 
Introduction  
The geometry of a deposit often aligns with the continuity of variables of interest within modeling 
domains. Modeling complex deposits with locally varying anisotropies, like fluvial channels, is important 
for accurate flow response prediction.  

Here, skeletonization algorithms are used to represent the general shape of a formation. We use 
Sethian’s fast marching method and its deviant form with multistencils in calculating the centerline of 3D 
ore bodies. Skeletonization of 3D objects is meant for compact representation of discrete objects, aiding 
in visualization, feature tracking and extraction etc.  The skeleton of an object can have several 
definitions. Blum first put forth a precise definition as the locus of the centers of maximal disks contained 
in the original object. For our application, the skeleton is defined as a subset of the original dataset where 
(1) the skeleton has centered geometry within the bounds of the dataset and (2) it is largely connected.  
At the core of the skeletonization algorithm is the Fast Marching Method (FMM). Several variations will be 
explore and compared for centerline extraction.  

FMMs track the evolution of a closed surface in 3D (closed curve in 2D) as it arrives at the points 
of a discretized lattice (wave propagation). A closed surface or interface propagation is identified by its 
motion, with two types of motion  (1) a uniformly expanding or contracting motion normal to the current 
plane and (2) where the interface can be expressed as the boundary value formulation, whereas an 
interface advancing erratically is an initial value problem.   
 
Boundary Value Formulation 
Consider Γ to be the stated interface that moves in one direction with a strictly advancing or receding 
front with velocity F.  The path of the interface boundary overlies a grid.  In order to track the progress of 
the surface we denote T(x) as the arrival time of the front as it reaches node x.  Time values can be used 
to infer the distance from the boundary from current location of the front. In higher dimensions the 
equation of motion of a propagating front is:  
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The arrival time at the initial position is 0. The boundary value problem is formulated as in (1), 
where the speed depends only on the position x and is a nonlinear first-order PDE known as the Eikonal 
equation. The FMM approximates the solution to (1) by calculating a scalar field T.  
 
Fast Marching Method  
Skeletal points are formed by the collapse of compact interface segments as the FMM algorithm tracks 
the front’s movement. The FMM algorithm begins from an initial set of conditions (one or several voxels) 
and calculates the distance field from the voxel(s). The voxels in the initial condition are frozen as the 
distances to the neighbors are calculated. Neighbors with computed distances are in the narrow band 
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voxels. This narrow band propagates in the iteration of the central loop.  As the voxel with the smallest 
distance is frozen, further distances are computed from the surrounding voxels. Thus we see the 
algorithm maintaining a narrow band of grid points, freezing voxels in its march.  An interface is expected 
to traverse the grid points once, so the frozen voxels are only used to calculate distance values of others 
and is never recalculated.  

The time field in the FMM algorithm can be stated more precisely as: 

1. Central loop: search among all the narrow band points for the point with the smallest distance, 
extract and change its label to frozen. 

2. For each neighbor that is not frozen and not in the narrow band, compute distance and insert in the 
narrow band. If the neighbor is in the narrow band recomputed its value. 

3. Update the narrow band order as the distances are recomputed. 
4. Loop back to extract the voxel with smallest distance value. 

Distances are calculated from the solutions to Eikonal equation. The distance values of voxels 
within the narrow band are estimated so that the gradient of the arrival time is equal to reciprocal of 
speed of the front.  Sethian (1996) proposes the following formula the square of the gradient: 
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For a point with unknown distance values, the squared gradient in (2) is calculated from a six-
connected neighborhood scheme. Solution to (2) is based on the use of one sided derivatives computed 
using forward and backward differences: 

 
   VA –VB = G[x,y,z] –G[x-1,y,z] = D-xG 

   VC –VA = G[x+1,y,z] –G[x,y,z]=D+xG 

 

 where, D-x and D+x  are the backward and forward differences, G is the voxel lattice (voxel 
distance is implicitly assumed a unit distance). 

The squared partial derivative in the x-direction can be approximated as: 

  T2
x ≈ max (D-xG, -D+xG,0)2 = max(VA –VB, VA –VC,0)2 

The approximated squared gradient length can be calculated, after the partial derivatives of y 
and z as: 

 

∆T 2 = Tx
2 + Ty

2 + Tz
2

 
FMM assumes a linear front which could create problems in computing distance from highly 

curvilinear fronts.  This has motivated several derivatives of FMM. Often termed the higher accuracy 
version of FMM (FMMHA), considers the second order partial derivatives of the forward and backward 
differences. In addition to FMM, the FMMHA imposes the following conditions: 

 
1. Points two voxels away in any direction from current (i,j,k) are frozen (i.e. distance values are known) 
2. Points stated as in (1) must have less travel time than those voxels one point away from (i,j,k) 
 
Multistencils Fast Marching Method 
The FMM and FMMHA are highly consistent and accurate in solving the Eikonal equation but suffer from 
numerical errors along diagonal neighborhoods. Hassouna and Farag incorporate exhaustive diagonal 
information in FMM by using several stencils (Figure 1) centered at each grid point covering all possible 
neighbors. So the method solves the Eikonal equations at several stencils and picks the solutions satisfying 
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the FMM causality condition, i.e. the arrival time T(x) depends on immediate neighbors that have smaller 
values.  For details on its derivation interested readers are directed to Hassouna and Farag (2007). 
 
3D Centerlines 
The use of FMM or FMMHA results in a set of coordinates that define the centerline.  Centerline 
extraction is a matter of connecting these points, where adjoining pixels give us the desired 3D surface. 
Figure 2 provides an example for a 3D object.  In literature FMM is reported to track the evolution of 
closed 3D surfaces (curves in 2D) but areas where the centerline loops in on itself are possible.  This is a 
problem because the morphology in certain parts is not captured. Hassouna et al (2007) derivate of the 
FMM can contour the medial axis of an curvilinear object very well, however their model does not have 
features where an ‘arm’ of the object loops into itself.  To overcome this we introduce breaks where the 
major ‘loop’ or closed formations lie and then apply the methods separately (Figure 3).    

The aim is to obtain a measure of continuity at every point in the modeling region.  Therefore, as 
the skeleton represents the general shape of the body, we can use it to generate an exhaustive LVA field 
for the deposit of interest by kriging. However, we can also populate an LVA map by considering the 
directional derivative along the centerline and interpolating it locally. The derivative in each axis is 
representative of the surrounding features, and is assumed to be smooth.  

Each voxel now stores its respective derivative, which around a small neighborhood relays the 
change in maximum direction of continuity of the centerline. We calculate the structure tensor from the 
directional vectors following the methodology outlined in paper 107 of this report. The choice of window 
size is important as too large a neighborhood would undermine the geometry in our narrow region of 
interest.   

It should be noted that the model is necessarily binary.  Furthermore, these methodologies show 
centerlines that assume continuity of the formation outside the modeling domain. To reduce the effect 
we add a buffer zone such that a band of zero values outline the model boundary.  

The final issue is interpolating the LVA from the centerlines. While here we have generated LVA 
from structure tensors (Figures 4 and 6), the centerline could be digitized to be point axial data and the 
method from paper 123 could be used (Figure 5 and 7).  In general the FMM and FMMHA both generate 
reasonable LVA field. 
 
Results and Future Work  
The MFMM is termed the higher accuracy variant of the original FMM. At each location the former solves 
the Eikonal equation along several stencils (introduces several stencils not aligned with the natural 
coordinate system). LVA maps from both the FMM and MFMM are similar. These methodologies provide 
a robust tool in extracting the general shape/features of interest for use in LVA field inference.  
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Figure 1 Stencil for a six-connected FMM neighborhood  

 
Figure 2 Centerline created using FMM 

 

 
Figure 3 The presence of several ‘looped’ areas are cut to make different regions, and FMM applied separately. The 
resulting centerline traces a larger part of the model. This convention of regionalized centerline modeling is used in 
rest of the results.  
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Figure 4 Plan view of LVA map populated using tensorial interpolation 

 
 

 
Figure 5 LVA map generated using kriging 

 
 

 
Figure 6 Centerlines generated using  MFMM; LVA shown are from tensorial interpolation 
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Figure 7  Kriged LVA results of the centerline values; the latter generated with MFMM   


