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Clustering as an Alterna ve to Ranking Realiza ons

Saina Lajevardi, and Clayton V. Deutsch

Although a large number of realiza ons (typically 100 or more) are required to understand the uncertainty at
a geological site, processing all of the realiza ons through a complex transfer func on is not prac cal. Despite
the fact that realiza ons are sufficiently different to allow us to understand the uncertainty, they s ll carry large
spa al correla on due to common condi oning data and modeling parameters. This enables prac oners to
consider fewer realiza ons. Ranking has been around for a while as a widely prac ced approach to select a few
realiza ons for detailed processing. In this paper, we tackle this problem through a different paradigm, that
is, clustering the realiza ons according to relevant geological and spa al characteris cs. There is no a-priori
assump on about whether the realiza ons will perform be er or worse. The result of clustering is to par on
the realiza ons into different groups that share similar features. The results could be expressed by a few
representa ve (e.g. centroid) values associated to every cluster. This approach is different, but complementary
to the conven onal ranking approach.

Introduc on
Stochas c simula on has been around as one of the earliest techniques in risk and sensi vity analysis in many
fields as well as spa al sampling in earth sciences. Genera ng a large number of realiza ons by Monte Carlo
Simula on (MCS) can be thought of as simple random sampling. This is themost primi ve approach in stochas-
c simula on because of the large number of realiza ons that must be processed to understand response

uncertainty. Selec ve sampling was developed to require fewer of realiza ons. Algorithms such as La n
Hypercube Sampling (LHS) or orthogonal sampling could also be used for this purpose. The challenge with
this technique in geosta s cs is that the geological models have very high dimension - o en tens of millions of
grid cell loca ons and selec ng a quan le a-priori is not possible.

The solu on adopted in geosta s cs has been to rank the realiza ons by a quick-to-calculate measure
also known as a simple transfer func on. It is essen al that the simple transfer func on be highly correlated
to the full transfer func on that is of actual interest. A large number of realiza ons are generated, then a few
realiza ons are chosen for more detailed analysis based on their quan le posi on using the simple transfer
func on. The ranking changes with any change in the analysis, such as when the area of interest changes, the
well loca ons change, the recovery process changes and so on.

This paper presents a different approach; the star ng point is the same: a large number of realiza ons,
then the realiza ons are grouped into clusters. Clustering has been around as a classical procedure for data
descrip on in data mining and data analysis. The concept of clustering is in many ways close to the data
selec on as it a empts to par on data into different groups. Every group could then be described by a
representa ve (e.g. centroid). In this context, the representa ves of the clusters could be considered as the
selected realiza ons which would undergo the further processing in reservoir assessment.

Clustering the realiza ons could be applied in different concepts. Every realiza on could be considered
as a long array of grid cells describing a geological feature of the reservoir. This is a very close problem tomul -
class clustering. In that case, every realiza on is linearized to be a vector. For example, if every realiza on
contains 100× 10× 10 grid cells, every vector in the mul -class matrix will have a length of 104. If clustering
is to be applied on 100 realiza ons, the matrix has a dimension of 100 × 104. Kernel can then be applied to
the realiza ons and measure the similari es between the data points (grid nodes). This way, the grouping is
applied over the grids than realiza ons. In our example, the kernel matrix will be of dimension 100 × 100

(including the dot products of every incident).
Here, however, our approach to clustering is slightly different. We consider every realiza on as the

collec on of data points andmeasure the similari es between the realiza on through some features associated
to every realiza on. Because of the uncertainty exists in the es ma on of the realiza ons, every realiza on
describes the geological (or flow) features slightly different than others. However, depending on the reservoir
distribu on at every realiza on, feature's measurements are different for different realiza ons. Depending on
how similar the distribu on of reservoir is in the realiza ons, features might reveal higher (lower) correla ons.
The measured similari es between features of realiza ons is the criteria to group them together. Realiza ons
in one group are expected to perform closely in the further processes; this could also be considered as a way
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to reduce the number of realiza ons required for further processes.

Clustering: Different Paradigm to Selec ng Realiza ons
Clustering implies grouping number of objects in a way that the objects in one group are more similar to each
other compared to the ones in other groups. There are many algorithms for data clustering in the literature.
Since evalua ng the clustering performance is not our purpose at this paper, we focus on a reasonable, simple
clustering algorithm to group the realiza ons. The k-means (centroid-based) clustering is a simple form of
clustering that is widely used. K-means clustering is based on measuring the distance between the realiza-
ons considering all dimensions (features). This is very close to vector quan za on, where the centroid are

randomly chosen from a codebook (the codebook in our case is the collec on of realiza ons). This is basically
an itera ve clustering approach. The algorithm however, lacks the power to extract the natural cluster of the
data; it is required to decide on the number of groups beforehand. That is not the only disadvantage that K-
means clustering suffers from. K-means clustering applies par oning on data linearly. This in fact limits the
performance of clustering and is not the most appropriate approachmost of the me; K-means clustering does
not perform well on data having nonlinear structure.

In the K-means clustering, the number of clusters K should be determined prior to data clustering. This
typically is considered as one of the disadvantages of K-means approach. There are several work in literature
concentra ng on this issue and sugges ng global K-means clustering to resolve the ini aliza on problem incre-
mentally (Tzortzis and Likas, 2008). However, we avoid the complexity at this point and devote this work to the
main concept of Kernel K-means clustering over the realiza ons. We also determine the numbers of clusters
based on the numbers of principal components of the data set. Principal component analysis in mul variate
sta s cs is widely known as an effec ve dimension reduc onmethod which represents data at its most variate
dimensions. Since sufficiently large principal components represent effec ve dimensions of the data set, they
might be a good approxima on of the number of clusters. In addi on, we should consider the fact that large
number of clusters are not required at this work. As the number of selected realiza ons are going to be process
further, smaller numbers of them which can efficiently represent the realiza ons set are more appreciated.

Kernel K-means Clustering
In this work, we intend to cluster the realiza ons according to several features in the mul -dimensional space.
As was discussed, this is to allow other understanding of realiza ons in addi on to the common techniques in
prac ce such as ranking. The main purpose of ranking is to reduce the number of realiza ons for further pro-
cesses. We propose realiza ons clustering for the same purpose; every cluster is the collec on of realiza ons
which are more similar and could be represented with one of them (e.g. centroid). The selected realiza ons
go through further processes instead of using all realiza ons which is almost always imprac cal.

In ranking, the realiza ons are sorted based on the measure of one feature while in our clustering,
grouping data based on one feature does not make sense or more precisely is just equivalent to ranking.
Therefore, we apply clustering in a mul -dimension domain. Every dimension is one feature which has been
measured for all the realiza ons. Note that the features are not always structured linearly, this necessi es the
u liza on of a clustering algorithm which is not confined to par oning data only linearly. In other words, the
clustering algorithmwhich par on data considering the nonlinearity structure is themost adequate approach.

Kernel func on ensures that the measured similari es between the realiza ons captures the effect
of nonlinear features as well. When kernel is applied to the data matrix, the data is mapped from input
space to the feature space. This transforma on is nonlinear and has larger dimensions than data space. In
the feature space, since the nonlinear structure of data has been capture, applying a clustering algorithm
which par on data linearly no longer would be a problem. This brings us back to the u liza on of the most
common, conven onal clustering algorithm, K-means clustering. K-means clustering is then separate data into
non-overlapping clusters. It groups data based on their closeness to the center of the group. The criteria for
closeness is Euclidean distance which is applied in mul -dimensional space in our scenario (more than two
features are suggested to be included).

The given data set χ = x1, x2, · · · , xN is to be par oned into K clusters of C1, C2, · · · , CN and every
xn ∈ Rd. In K-means clustering, when a vector belongs to a cluster, its Euclidean distance to the center of that
cluster should be the smallest with respect to other centroid. In other words, the data (vectors) with more
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similari es should be grouped together. The clustering error for the en re data set is given by

E(m1, · · · , mK) =
N∑

n=1

K∑
k=1

I(xn ∈ Ck)∥xn - mk∥2 (1)

where I indicates the existence of a vector in a specific cluster. We apply K-means clustering in the feature
spaceF (n× n), where the kernel func on Kij = ϕ(xi)Tϕ(xj) has transferred the data from original space Rn×p

into higher dimension of feature space. The simplest transfer func on ϕwe apply here is K(xi, xj)which directly
provide the inner products in feature space. The first step in kernel K-means clustering is to stabilize the centroid
of the cluster. The ini al centroid are chosen randomly. This requires the algorithm to look for the minimum
distance between every kernel data ϕ(Xn) and all centroid of clusters ∥ϕ(Xn) - mi∥2 where 1 ≤ i ≤ k. The
cluster which is equivalent to argmini(∥ϕ(Xn) -mi∥2) includes ϕ(Xn). Next to the addi on of every kernel data
to a cluster, the centroid of the cluster is updated by averaging the belonging kernel data of the corresponding
cluster. This con nues un l the centroid are no longer changing and every realiza on belongs to its group.
At the end of this procedure, every centroid is equivalent to mk =

∑N
n=1 I(xn∈Ck)ϕ(xn)∑N

n=1 I(xn∈Ck)
. The objec ve of this

approach is to minimize the clustering error in feature space where the data vector is replaced by its kernel
transform.

E(m1, · · · , mK) =
N∑

n=1

K∑
k=1

I(xn ∈ Ck)∥ϕ(Xn) - mi∥2 (2)

This algorithm is believed to convergewhen kernelmatrix is posi ve semidefinite (PSD). The kernelmatrixwhich
directly apply the inner products of data set is always posi ve semidefinite and suitable at this stage. There are
different characteriza ons associated with PSD matrices. One is that all eigenvalues are requires to be real and
posi ve (always true with the inner product matrix). Since in our case, the kernel matrix is generated by inner
product of all data values, its posi ve definiteness is guaranteed.

The purpose of clustering the realiza ons is to iden fy a smaller number of realiza ons that would
perform differently. Kernel clustering is a reasonable choice due to the fact that variables measured as realiza-
ons proper esmight inherit nonlinear structurewhichwill not be caught if conven onal clustering techniques

are applied to the data space. For example, connected hydrocarbon volume (CHV) is a feature which its
determina on not only depends on the net distribu on of realiza on but well placement as well. If it is
considered in the clustering (which it should due to its importance in recovery), its nonlinear structure would
not be captured in the K-means realiza ons and the clustering results are not accurate, since it treats CHV as if
it is linear. Kernel exploits data nonlinearity structure and reveals it in the feature space. Therefore, applying
the linear clustering i.e. K-means on the feature space enables the realiza ons with more similari es group
together regardless of the nonlinear structure.

Our experiment shows that CHV has a nonlinear structure compared to the other features such as net
volume, numbers of geoobjects and tortuosity. Thus, it dominates the clustering and therefore, the realiza ons
in different group show very small overlap in terms of CHV. This could be another way to look at ranking of CHV.

The choice of features depends on the data available and an understanding ofwhatmight be important
for a par cular problem. For example, net volume can mostly be considered as a linear variable specially when
the heterogeneity of the realiza ons are not high. The purpose of applying kernel based clustering is to detect
the nonlinear structure of data and enable data clustering in a higher dimension (kernel dimension).

Experiments
Consider 100 realiza ons modeling a small area of 100 grids in X direc on, 20 in Y direc on and 100 in Z
direc on. Every realiza on is associated with several a ributes that we can compute quickly. Variables such
as (1) the net volume (2) the numbers of geoobjects (3) the effec ve permeability (4) the tortuosity of the
largest object (5) local connec vity; connected hydrocarbon volume considering well placement. Some of
these features are closely related and some less. The correla on between the features also vary depending
on the heterogeneity of the realiza ons.

Some other measurements could directly result from the technology that is applied for recovery (e.g.
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SAGD). Local connec vity is another feature that appears to be different depending on where the recovery
well pair is planned to be placed. As connected and uniform the reservoir is simulated to be in a realiza on,
The number of geoobjects is smaller and the volume of each is larger. Even at this stage, the Image cleaning
techniques such as erosion/ dila on could significantly influence the number of geoobjects depending on how
intense the erosion/ dila on are applied. Local connec vity is also to be considered as another realiza on's
feature. How connected the net area is around the well placement would result in different categoriza on of
the realiza ons. Typically, the reservoir distribu ons are not uniform and the local connec vity is crucial to well
placement and recovery performance.

The numbers of connected well pairs throughout the reservoir could be considered as another im-
portant feature of realiza on. Having set the well placement, different realiza ons appear to be connected
differently from well to well depending on the net distribu on of the reservoir. Evalua ng the numbers of cells
connec ng specific number of wells is an effec ve factor in recovery.

Spa al features of the realiza ons such as the entropy, specific property of the variogram (the distance
where the variogram (ver cal) reaches 50% of its sill).

Some more measurements associated with the flow could be evaluated and used to help dis nguish
realiza ons accordingly. Fast flow simula on or proxymodels could describe the realiza ons differently. Similar
to the othermeasurements related to the geology of the realiza ons, these proper es could also be seen as part
of the clustering features. The example in this paper only employs a facies model and provide measurement
factors such as net volume, geometry (number of geoobjects), tortuosity of the biggest objects, specific distance
of variogram and connected hydrocarbon volume for the en re reservoir where the well placed at the center.
A small example illustrates the approach.

Sensi vity Analysis
Applying the clustering algorithm, it is important to study how stable the resul ng clusters are if noise is added
to the data. Note, that this would be different based on the available measurements and how correlated they
are. Also, the nonlinearity structure of the data in the feature domain could have a large influence on the way
the clustering works, the interpreta ons, the stability and the results obtained.

In the first example, the realiza ons have large net volume distribu on. We have added noise as
one of the variable to our data set and applied both the clustering algorithm to decide on how the clusters
change. Note that we keep the number of clusters the same before and a er the addi on of noise so that the
difference in clustering is easier to understand. We have applied the kernel clustering to the data set before
and a er the addi on of noise variable which result in the average error of E = 4.09310-7 at both situa ons.
Also, the average distance between the centers is E = 1.4610-6 which is bigger than the distance inside the
cluster (expected). The number of clusters could be adjusted if this result is not reasonable. Every realiza on is
also grouped within the same cluster with and without the noise; the similarity of clusters realiza ons is 100%.
However, applying K-means in data space when there is no noise added, shows clustering error of 0.1161, while
it changes to 0.2469 for the case when noise is added. As can be seen, the clustering error is much larger for
the case when K-means clustering is applied to the data space instead of feature space. This confirms that
the nonlinearity structure in the data space cannot be exploited using K-means clustering. Also, the similarity
between clusters before and a er the addi on of noise is 25%which is the sign of instability. This is as opposed
to Kernel K-means clustering in our experiment which shows sign of stability against noise. Figures 1, 2, and 3
demonstrates the result of kernel K-means clustering on data in the original space. CHV seems to dominate the
clustering in this example. The sca er plots showsmore structured with the features such as net volume, small
area CHV, or effec ve permeability and less correla on (effect of) tortuosity or number of geoobjects. This is
why kernel clustering looks proper at this point; data in feature space reveals the strength of the effect of every
variable in clustering.

Our analysis shows that the variable which has the least correla on with the noise most mes (87%
in our case), while it has sufficiently large correla on with other variables and hence ir dominate the clustering
process. For example, the following table demonstrates the correla on coefficients of three feature vectors
for 100 realiza ons. The second table 2 demonstrates the correla on coefficients when another variable of
tortuosity has been added to the clustering. This feature has the least correla on with the noise but at the
same me it has very low correla on with other variable too. This variable cannot dominate the clustering
procedure. It can be seen also, that the correla on between CHV and tortuosity (0.8871) is almost equal to
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the correla on between CHV and noise (0.8693). The numbers of cluster are 7. This is one cluster more than
the rank of the matrix. Here is when visual judgment could be a applied to adjust the number of clusters. One
realiza ons seems to be far away in terms of most features (see corresponding figures), and is being clustered
alone truly. Yet, there could be features among the feature vector representa ve that for example the existence

Table 1: Some correla on coefficients for the realiza ons features.

Correla on CHV Net Vol. Eff. Perm. noise
CHV 1.000 0.990 0.991 0.851

Net Vol. 0.990 1.000 0.998 0.860
Eff. Perm. 0.991 0.998 1.000 0.860
noise 0.851 0.860 0.860 1.000

Table 2: Some correla on coefficients for the realiza ons features at the presence of noise.

Correla on CHV Net Vol. Eff. Perm. Tortuosity noise
CHV 1.000 0.990 0.991 0.887 0.869

Net Vol. 0.990 1.000 0.998 0.914 0.880
Eff. Perm. 0.991 0.998 1.000 0.903 0.880
Tortuosity 0.887 0.914 0.903 1.000 0.787
noise 0.869 0.880 0.880 0.787 1.000

of two of them is very dominate in clustering. This is very much depending on the selected features. A more
variety of the features from different space and areas could bring more variability to the clustering paradigm.
The important thing is to be able to consider different aspects when realiza on selec on is performed.

In our second experiment, the total net volume is about 60%. The same clustering algorithm has been
applied and similar features have been used. The overall correla on of features are not as large as the first
experiment. Seven clusters have been considered and the average clustering error remains the same before
and a er the addi on of noise (E = 9.6410-7). Figures 4 and 5 shows less structure compare to the previous
experiment. The effect of the variables such as toruosity or number of geoobjects vanishes much faster and a
few firs variables seem to control the main part of the clustering task.

Discussions and Results
Applying clustering on the realiza ons requires more effort than ranking based on a scalar. Depending on
the reservoir distribu on, the spa al correla on of realiza ons, the existence heterogeneity, the measured
variables, the approach, understandings, decision and results might be different. For example, some mes the
realiza ons are quite homogenous and many variables are so correlated that they are basically redundant in
the clustering analysis. Also, some mes some variables are too uncorrelated or carry no specific structure so
that they would be treated as noise in clustering. Or even if they are able to control clustering, the groups seem
more random than conduc ng an important informa on of the realiza ons. In some other cases, features such
as CHV seems to dominate the clustering performance. One immediate reason is that CHV measurements is
directly related to connected net distribu on of deposit. The other reason is also that this rela onship has
nonlinear structure as it considers factors such as well placement and fluid flow. Also, from prac cal point of
view, this becomes advantageous, since the realiza on selec on mostly takes place for the purpose of flow
simula ons. In fact, ranking mostly u lize CHV to rank the realiza ons on clustering.

In our clustering approach, we can specify how important each variable should be in the final grouping.
For example, for a case when different CHV for different scales are present and the experiment shows that the
CHV of the en re area is mostly dominant in clustering, one could increase the effect of the other smaller
scales CHV by squaring (n) them. This all explains that clustering of realiza ons is not as effec ve if it just
applies automa cally. The understa ng of a ributes, visual analysis and one's judgment is fully appreciated.

We have applied Kernel K-means clustering on realiza ons as a different paradigm in selec ng and
understanding the uncertainty. We do the clustering over several measured features which together represent
every cluster. Different clustering type perform differently and depending on the features' structure one
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would perform be er than others. In the case of realiza ons, the measured variables would vary depending
on different data analysis or available data. We have found Kernel K-means clustering the most adequate
clustering type in our experiment. The reason is that, in Kernel K-means, the par oning of data takes place
in feature space rather than data space. This already resolve the linear par oning issue with K-means. The
nonlinearity of data is captured and transferred to feature space before the linear par oning is applied to it. In
our experiment, CHV dominates the clustering most me due to its par cular structure and extra informa on
which carries related to the realiza ons.
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Figure 1: Figure at top illustrates the clustered data in original domain using Kernel K-means clustering. Figure
at bo om is the clustered sca er plot of CHV and small CHV.
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Figure 2: Figure at top illustrates the clustered sca er plot of CHV and net volume. Figure at bo om is the
clustered sca er plot of CHV and effec ve permeability.
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Figure 3: Figure at top illustrates the clustered sca er plot of CHV and numbers of geobodies. Figure at bo om
is the clustered sca er plot of CHV and tortuosity.
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Figure 4: Figure at top illustrates the clustered data in original domain using Kernel K-means clustering. Figure
at bo om is the clustered sca er plot of CHV and small CHV.
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Figure 5: Figure at top illustrates the clustered sca er plot of CHV and net volume. Figure at bo om is the
clustered sca er plot of CHV and effec ve permeability.
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