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Clustering as an AlternaƟve to Ranking RealizaƟons

Saina Lajevardi, and Clayton V. Deutsch

Although a large number of realizaƟons (typically 100 or more) are required to understand the uncertainty at
a geological site, processing all of the realizaƟons through a complex transfer funcƟon is not pracƟcal. Despite
the fact that realizaƟons are sufficiently different to allow us to understand the uncertainty, they sƟll carry large
spaƟal correlaƟon due to common condiƟoning data and modeling parameters. This enables pracƟƟoners to
consider fewer realizaƟons. Ranking has been around for a while as a widely pracƟced approach to select a few
realizaƟons for detailed processing. In this paper, we tackle this problem through a different paradigm, that
is, clustering the realizaƟons according to relevant geological and spaƟal characterisƟcs. There is no a-priori
assumpƟon about whether the realizaƟons will perform beƩer or worse. The result of clustering is to parƟƟon
the realizaƟons into different groups that share similar features. The results could be expressed by a few
representaƟve (e.g. centroid) values associated to every cluster. This approach is different, but complementary
to the convenƟonal ranking approach.

IntroducƟon
StochasƟc simulaƟon has been around as one of the earliest techniques in risk and sensiƟvity analysis in many
fields as well as spaƟal sampling in earth sciences. GeneraƟng a large number of realizaƟons by Monte Carlo
SimulaƟon (MCS) can be thought of as simple random sampling. This is themost primiƟve approach in stochas-
Ɵc simulaƟon because of the large number of realizaƟons that must be processed to understand response
uncertainty. SelecƟve sampling was developed to require fewer of realizaƟons. Algorithms such as LaƟn
Hypercube Sampling (LHS) or orthogonal sampling could also be used for this purpose. The challenge with
this technique in geostaƟsƟcs is that the geological models have very high dimension - oŌen tens of millions of
grid cell locaƟons and selecƟng a quanƟle a-priori is not possible.

The soluƟon adopted in geostaƟsƟcs has been to rank the realizaƟons by a quick-to-calculate measure
also known as a simple transfer funcƟon. It is essenƟal that the simple transfer funcƟon be highly correlated
to the full transfer funcƟon that is of actual interest. A large number of realizaƟons are generated, then a few
realizaƟons are chosen for more detailed analysis based on their quanƟle posiƟon using the simple transfer
funcƟon. The ranking changes with any change in the analysis, such as when the area of interest changes, the
well locaƟons change, the recovery process changes and so on.

This paper presents a different approach; the starƟng point is the same: a large number of realizaƟons,
then the realizaƟons are grouped into clusters. Clustering has been around as a classical procedure for data
descripƟon in data mining and data analysis. The concept of clustering is in many ways close to the data
selecƟon as it aƩempts to parƟƟon data into different groups. Every group could then be described by a
representaƟve (e.g. centroid). In this context, the representaƟves of the clusters could be considered as the
selected realizaƟons which would undergo the further processing in reservoir assessment.

Clustering the realizaƟons could be applied in different concepts. Every realizaƟon could be considered
as a long array of grid cells describing a geological feature of the reservoir. This is a very close problem tomulƟ-
class clustering. In that case, every realizaƟon is linearized to be a vector. For example, if every realizaƟon
contains 100× 10× 10 grid cells, every vector in the mulƟ-class matrix will have a length of 104. If clustering
is to be applied on 100 realizaƟons, the matrix has a dimension of 100 × 104. Kernel can then be applied to
the realizaƟons and measure the similariƟes between the data points (grid nodes). This way, the grouping is
applied over the grids than realizaƟons. In our example, the kernel matrix will be of dimension 100 × 100

(including the dot products of every incident).
Here, however, our approach to clustering is slightly different. We consider every realizaƟon as the

collecƟon of data points andmeasure the similariƟes between the realizaƟon through some features associated
to every realizaƟon. Because of the uncertainty exists in the esƟmaƟon of the realizaƟons, every realizaƟon
describes the geological (or flow) features slightly different than others. However, depending on the reservoir
distribuƟon at every realizaƟon, feature's measurements are different for different realizaƟons. Depending on
how similar the distribuƟon of reservoir is in the realizaƟons, features might reveal higher (lower) correlaƟons.
The measured similariƟes between features of realizaƟons is the criteria to group them together. RealizaƟons
in one group are expected to perform closely in the further processes; this could also be considered as a way
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to reduce the number of realizaƟons required for further processes.

Clustering: Different Paradigm to SelecƟng RealizaƟons
Clustering implies grouping number of objects in a way that the objects in one group are more similar to each
other compared to the ones in other groups. There are many algorithms for data clustering in the literature.
Since evaluaƟng the clustering performance is not our purpose at this paper, we focus on a reasonable, simple
clustering algorithm to group the realizaƟons. The k-means (centroid-based) clustering is a simple form of
clustering that is widely used. K-means clustering is based on measuring the distance between the realiza-
Ɵons considering all dimensions (features). This is very close to vector quanƟzaƟon, where the centroid are
randomly chosen from a codebook (the codebook in our case is the collecƟon of realizaƟons). This is basically
an iteraƟve clustering approach. The algorithm however, lacks the power to extract the natural cluster of the
data; it is required to decide on the number of groups beforehand. That is not the only disadvantage that K-
means clustering suffers from. K-means clustering applies parƟƟoning on data linearly. This in fact limits the
performance of clustering and is not the most appropriate approachmost of the Ɵme; K-means clustering does
not perform well on data having nonlinear structure.

In the K-means clustering, the number of clusters K should be determined prior to data clustering. This
typically is considered as one of the disadvantages of K-means approach. There are several work in literature
concentraƟng on this issue and suggesƟng global K-means clustering to resolve the iniƟalizaƟon problem incre-
mentally (Tzortzis and Likas, 2008). However, we avoid the complexity at this point and devote this work to the
main concept of Kernel K-means clustering over the realizaƟons. We also determine the numbers of clusters
based on the numbers of principal components of the data set. Principal component analysis in mulƟvariate
staƟsƟcs is widely known as an effecƟve dimension reducƟonmethod which represents data at its most variate
dimensions. Since sufficiently large principal components represent effecƟve dimensions of the data set, they
might be a good approximaƟon of the number of clusters. In addiƟon, we should consider the fact that large
number of clusters are not required at this work. As the number of selected realizaƟons are going to be process
further, smaller numbers of them which can efficiently represent the realizaƟons set are more appreciated.

Kernel K-means Clustering
In this work, we intend to cluster the realizaƟons according to several features in the mulƟ-dimensional space.
As was discussed, this is to allow other understanding of realizaƟons in addiƟon to the common techniques in
pracƟce such as ranking. The main purpose of ranking is to reduce the number of realizaƟons for further pro-
cesses. We propose realizaƟons clustering for the same purpose; every cluster is the collecƟon of realizaƟons
which are more similar and could be represented with one of them (e.g. centroid). The selected realizaƟons
go through further processes instead of using all realizaƟons which is almost always impracƟcal.

In ranking, the realizaƟons are sorted based on the measure of one feature while in our clustering,
grouping data based on one feature does not make sense or more precisely is just equivalent to ranking.
Therefore, we apply clustering in a mulƟ-dimension domain. Every dimension is one feature which has been
measured for all the realizaƟons. Note that the features are not always structured linearly, this necessiƟes the
uƟlizaƟon of a clustering algorithm which is not confined to parƟƟoning data only linearly. In other words, the
clustering algorithmwhich parƟƟon data considering the nonlinearity structure is themost adequate approach.

Kernel funcƟon ensures that the measured similariƟes between the realizaƟons captures the effect
of nonlinear features as well. When kernel is applied to the data matrix, the data is mapped from input
space to the feature space. This transformaƟon is nonlinear and has larger dimensions than data space. In
the feature space, since the nonlinear structure of data has been capture, applying a clustering algorithm
which parƟƟon data linearly no longer would be a problem. This brings us back to the uƟlizaƟon of the most
common, convenƟonal clustering algorithm, K-means clustering. K-means clustering is then separate data into
non-overlapping clusters. It groups data based on their closeness to the center of the group. The criteria for
closeness is Euclidean distance which is applied in mulƟ-dimensional space in our scenario (more than two
features are suggested to be included).

The given data set χ = x1, x2, · · · , xN is to be parƟƟoned into K clusters of C1, C2, · · · , CN and every
xn ∈ Rd. In K-means clustering, when a vector belongs to a cluster, its Euclidean distance to the center of that
cluster should be the smallest with respect to other centroid. In other words, the data (vectors) with more
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similariƟes should be grouped together. The clustering error for the enƟre data set is given by

E(m1, · · · , mK) =
N∑

n=1

K∑
k=1

I(xn ∈ Ck)∥xn - mk∥2 (1)

where I indicates the existence of a vector in a specific cluster. We apply K-means clustering in the feature
spaceF (n× n), where the kernel funcƟon Kij = ϕ(xi)Tϕ(xj) has transferred the data from original space Rn×p

into higher dimension of feature space. The simplest transfer funcƟon ϕwe apply here is K(xi, xj)which directly
provide the inner products in feature space. The first step in kernel K-means clustering is to stabilize the centroid
of the cluster. The iniƟal centroid are chosen randomly. This requires the algorithm to look for the minimum
distance between every kernel data ϕ(Xn) and all centroid of clusters ∥ϕ(Xn) - mi∥2 where 1 ≤ i ≤ k. The
cluster which is equivalent to argmini(∥ϕ(Xn) -mi∥2) includes ϕ(Xn). Next to the addiƟon of every kernel data
to a cluster, the centroid of the cluster is updated by averaging the belonging kernel data of the corresponding
cluster. This conƟnues unƟl the centroid are no longer changing and every realizaƟon belongs to its group.
At the end of this procedure, every centroid is equivalent to mk =

∑N
n=1 I(xn∈Ck)ϕ(xn)∑N

n=1 I(xn∈Ck)
. The objecƟve of this

approach is to minimize the clustering error in feature space where the data vector is replaced by its kernel
transform.

E(m1, · · · , mK) =
N∑

n=1

K∑
k=1

I(xn ∈ Ck)∥ϕ(Xn) - mi∥2 (2)

This algorithm is believed to convergewhen kernelmatrix is posiƟve semidefinite (PSD). The kernelmatrixwhich
directly apply the inner products of data set is always posiƟve semidefinite and suitable at this stage. There are
different characterizaƟons associated with PSD matrices. One is that all eigenvalues are requires to be real and
posiƟve (always true with the inner product matrix). Since in our case, the kernel matrix is generated by inner
product of all data values, its posiƟve definiteness is guaranteed.

The purpose of clustering the realizaƟons is to idenƟfy a smaller number of realizaƟons that would
perform differently. Kernel clustering is a reasonable choice due to the fact that variables measured as realiza-
Ɵons properƟesmight inherit nonlinear structurewhichwill not be caught if convenƟonal clustering techniques
are applied to the data space. For example, connected hydrocarbon volume (CHV) is a feature which its
determinaƟon not only depends on the net distribuƟon of realizaƟon but well placement as well. If it is
considered in the clustering (which it should due to its importance in recovery), its nonlinear structure would
not be captured in the K-means realizaƟons and the clustering results are not accurate, since it treats CHV as if
it is linear. Kernel exploits data nonlinearity structure and reveals it in the feature space. Therefore, applying
the linear clustering i.e. K-means on the feature space enables the realizaƟons with more similariƟes group
together regardless of the nonlinear structure.

Our experiment shows that CHV has a nonlinear structure compared to the other features such as net
volume, numbers of geoobjects and tortuosity. Thus, it dominates the clustering and therefore, the realizaƟons
in different group show very small overlap in terms of CHV. This could be another way to look at ranking of CHV.

The choice of features depends on the data available and an understanding ofwhatmight be important
for a parƟcular problem. For example, net volume can mostly be considered as a linear variable specially when
the heterogeneity of the realizaƟons are not high. The purpose of applying kernel based clustering is to detect
the nonlinear structure of data and enable data clustering in a higher dimension (kernel dimension).

Experiments
Consider 100 realizaƟons modeling a small area of 100 grids in X direcƟon, 20 in Y direcƟon and 100 in Z
direcƟon. Every realizaƟon is associated with several aƩributes that we can compute quickly. Variables such
as (1) the net volume (2) the numbers of geoobjects (3) the effecƟve permeability (4) the tortuosity of the
largest object (5) local connecƟvity; connected hydrocarbon volume considering well placement. Some of
these features are closely related and some less. The correlaƟon between the features also vary depending
on the heterogeneity of the realizaƟons.

Some other measurements could directly result from the technology that is applied for recovery (e.g.
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SAGD). Local connecƟvity is another feature that appears to be different depending on where the recovery
well pair is planned to be placed. As connected and uniform the reservoir is simulated to be in a realizaƟon,
The number of geoobjects is smaller and the volume of each is larger. Even at this stage, the Image cleaning
techniques such as erosion/ dilaƟon could significantly influence the number of geoobjects depending on how
intense the erosion/ dilaƟon are applied. Local connecƟvity is also to be considered as another realizaƟon's
feature. How connected the net area is around the well placement would result in different categorizaƟon of
the realizaƟons. Typically, the reservoir distribuƟons are not uniform and the local connecƟvity is crucial to well
placement and recovery performance.

The numbers of connected well pairs throughout the reservoir could be considered as another im-
portant feature of realizaƟon. Having set the well placement, different realizaƟons appear to be connected
differently from well to well depending on the net distribuƟon of the reservoir. EvaluaƟng the numbers of cells
connecƟng specific number of wells is an effecƟve factor in recovery.

SpaƟal features of the realizaƟons such as the entropy, specific property of the variogram (the distance
where the variogram (verƟcal) reaches 50% of its sill).

Some more measurements associated with the flow could be evaluated and used to help disƟnguish
realizaƟons accordingly. Fast flow simulaƟon or proxymodels could describe the realizaƟons differently. Similar
to the othermeasurements related to the geology of the realizaƟons, these properƟes could also be seen as part
of the clustering features. The example in this paper only employs a facies model and provide measurement
factors such as net volume, geometry (number of geoobjects), tortuosity of the biggest objects, specific distance
of variogram and connected hydrocarbon volume for the enƟre reservoir where the well placed at the center.
A small example illustrates the approach.

SensiƟvity Analysis
Applying the clustering algorithm, it is important to study how stable the resulƟng clusters are if noise is added
to the data. Note, that this would be different based on the available measurements and how correlated they
are. Also, the nonlinearity structure of the data in the feature domain could have a large influence on the way
the clustering works, the interpretaƟons, the stability and the results obtained.

In the first example, the realizaƟons have large net volume distribuƟon. We have added noise as
one of the variable to our data set and applied both the clustering algorithm to decide on how the clusters
change. Note that we keep the number of clusters the same before and aŌer the addiƟon of noise so that the
difference in clustering is easier to understand. We have applied the kernel clustering to the data set before
and aŌer the addiƟon of noise variable which result in the average error of E = 4.09310-7 at both situaƟons.
Also, the average distance between the centers is E = 1.4610-6 which is bigger than the distance inside the
cluster (expected). The number of clusters could be adjusted if this result is not reasonable. Every realizaƟon is
also grouped within the same cluster with and without the noise; the similarity of clusters realizaƟons is 100%.
However, applying K-means in data space when there is no noise added, shows clustering error of 0.1161, while
it changes to 0.2469 for the case when noise is added. As can be seen, the clustering error is much larger for
the case when K-means clustering is applied to the data space instead of feature space. This confirms that
the nonlinearity structure in the data space cannot be exploited using K-means clustering. Also, the similarity
between clusters before and aŌer the addiƟon of noise is 25%which is the sign of instability. This is as opposed
to Kernel K-means clustering in our experiment which shows sign of stability against noise. Figures 1, 2, and 3
demonstrates the result of kernel K-means clustering on data in the original space. CHV seems to dominate the
clustering in this example. The scaƩer plots showsmore structured with the features such as net volume, small
area CHV, or effecƟve permeability and less correlaƟon (effect of) tortuosity or number of geoobjects. This is
why kernel clustering looks proper at this point; data in feature space reveals the strength of the effect of every
variable in clustering.

Our analysis shows that the variable which has the least correlaƟon with the noise most Ɵmes (87%
in our case), while it has sufficiently large correlaƟon with other variables and hence ir dominate the clustering
process. For example, the following table demonstrates the correlaƟon coefficients of three feature vectors
for 100 realizaƟons. The second table 2 demonstrates the correlaƟon coefficients when another variable of
tortuosity has been added to the clustering. This feature has the least correlaƟon with the noise but at the
same Ɵme it has very low correlaƟon with other variable too. This variable cannot dominate the clustering
procedure. It can be seen also, that the correlaƟon between CHV and tortuosity (0.8871) is almost equal to
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the correlaƟon between CHV and noise (0.8693). The numbers of cluster are 7. This is one cluster more than
the rank of the matrix. Here is when visual judgment could be a applied to adjust the number of clusters. One
realizaƟons seems to be far away in terms of most features (see corresponding figures), and is being clustered
alone truly. Yet, there could be features among the feature vector representaƟve that for example the existence

Table 1: Some correlaƟon coefficients for the realizaƟons features.

CorrelaƟon CHV Net Vol. Eff. Perm. noise
CHV 1.000 0.990 0.991 0.851

Net Vol. 0.990 1.000 0.998 0.860
Eff. Perm. 0.991 0.998 1.000 0.860
noise 0.851 0.860 0.860 1.000

Table 2: Some correlaƟon coefficients for the realizaƟons features at the presence of noise.

CorrelaƟon CHV Net Vol. Eff. Perm. Tortuosity noise
CHV 1.000 0.990 0.991 0.887 0.869

Net Vol. 0.990 1.000 0.998 0.914 0.880
Eff. Perm. 0.991 0.998 1.000 0.903 0.880
Tortuosity 0.887 0.914 0.903 1.000 0.787
noise 0.869 0.880 0.880 0.787 1.000

of two of them is very dominate in clustering. This is very much depending on the selected features. A more
variety of the features from different space and areas could bring more variability to the clustering paradigm.
The important thing is to be able to consider different aspects when realizaƟon selecƟon is performed.

In our second experiment, the total net volume is about 60%. The same clustering algorithm has been
applied and similar features have been used. The overall correlaƟon of features are not as large as the first
experiment. Seven clusters have been considered and the average clustering error remains the same before
and aŌer the addiƟon of noise (E = 9.6410-7). Figures 4 and 5 shows less structure compare to the previous
experiment. The effect of the variables such as toruosity or number of geoobjects vanishes much faster and a
few firs variables seem to control the main part of the clustering task.

Discussions and Results
Applying clustering on the realizaƟons requires more effort than ranking based on a scalar. Depending on
the reservoir distribuƟon, the spaƟal correlaƟon of realizaƟons, the existence heterogeneity, the measured
variables, the approach, understandings, decision and results might be different. For example, someƟmes the
realizaƟons are quite homogenous and many variables are so correlated that they are basically redundant in
the clustering analysis. Also, someƟmes some variables are too uncorrelated or carry no specific structure so
that they would be treated as noise in clustering. Or even if they are able to control clustering, the groups seem
more random than conducƟng an important informaƟon of the realizaƟons. In some other cases, features such
as CHV seems to dominate the clustering performance. One immediate reason is that CHV measurements is
directly related to connected net distribuƟon of deposit. The other reason is also that this relaƟonship has
nonlinear structure as it considers factors such as well placement and fluid flow. Also, from pracƟcal point of
view, this becomes advantageous, since the realizaƟon selecƟon mostly takes place for the purpose of flow
simulaƟons. In fact, ranking mostly uƟlize CHV to rank the realizaƟons on clustering.

In our clustering approach, we can specify how important each variable should be in the final grouping.
For example, for a case when different CHV for different scales are present and the experiment shows that the
CHV of the enƟre area is mostly dominant in clustering, one could increase the effect of the other smaller
scales CHV by squaring (n) them. This all explains that clustering of realizaƟons is not as effecƟve if it just
applies automaƟcally. The understaƟng of aƩributes, visual analysis and one's judgment is fully appreciated.

We have applied Kernel K-means clustering on realizaƟons as a different paradigm in selecƟng and
understanding the uncertainty. We do the clustering over several measured features which together represent
every cluster. Different clustering type perform differently and depending on the features' structure one
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would perform beƩer than others. In the case of realizaƟons, the measured variables would vary depending
on different data analysis or available data. We have found Kernel K-means clustering the most adequate
clustering type in our experiment. The reason is that, in Kernel K-means, the parƟƟoning of data takes place
in feature space rather than data space. This already resolve the linear parƟƟoning issue with K-means. The
nonlinearity of data is captured and transferred to feature space before the linear parƟƟoning is applied to it. In
our experiment, CHV dominates the clustering most Ɵme due to its parƟcular structure and extra informaƟon
which carries related to the realizaƟons.
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Figure 1: Figure at top illustrates the clustered data in original domain using Kernel K-means clustering. Figure
at boƩom is the clustered scaƩer plot of CHV and small CHV.
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Figure 2: Figure at top illustrates the clustered scaƩer plot of CHV and net volume. Figure at boƩom is the
clustered scaƩer plot of CHV and effecƟve permeability.
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Figure 3: Figure at top illustrates the clustered scaƩer plot of CHV and numbers of geobodies. Figure at boƩom
is the clustered scaƩer plot of CHV and tortuosity.

126 - 8



Paper 126, CCG Annual Report 14, 2012 (© 2012)

0.02
0.04

0.06
0.08

0.1
0.12

0.14

0.05

0.1

0.15

0.2
0.092

0.094

0.096

0.098

0.1

0.102

0.104

0.106

0.108

Small CHVCHV

N
et

 V
ol

um
e

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.04

0.06

0.08

0.1

0.12

0.14

0.16

CHV

S
m

al
l C

H
V

Figure 4: Figure at top illustrates the clustered data in original domain using Kernel K-means clustering. Figure
at boƩom is the clustered scaƩer plot of CHV and small CHV.

126 - 9



Paper 126, CCG Annual Report 14, 2012 (© 2012)

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.092

0.094

0.096

0.098

0.1

0.102

0.104

0.106

0.108

CHV

N
et

 V
ol

um
e

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

CHV

K
z

Figure 5: Figure at top illustrates the clustered scaƩer plot of CHV and net volume. Figure at boƩom is the
clustered scaƩer plot of CHV and effecƟve permeability.
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