
Paper 128, CCG Annual Report 14, 2012 (© 2012) 

 128-1 

Note on Working with Trends in Geostatistics 
 

John G. Manchuk and Clayton V. Deutsch 
 

Non-stationary approaches in Geostatistics are being utilized more frequently.  Considering a trend model 
for the mean has been used for some time.  Working with trends can be done in several ways, this paper 
focuses on some of the explicit techniques including the traditional use of residuals, locally varying mean, 
and a conditional transformation approach.  Some discussion on the presence of bias when using residuals 
is provided and a relationship between the variogram of residuals and the variogram of the original 
variable and trend function is developed.  The result indicates two important factors for the variogram of 
residuals: 1 – the nugget effect of the residual variogram is the same as that of the original variable; 2 – 
the short range structure of the residuals variogram is the same as well. 
 
Introduction 
A common limitation of geostatistical methods is their dependence on a decision of stationarity over a 
finite domain of interest.  In general, the assumption of stationarity indicates a constant mean, 
homoscedastic variance, and fixed distribution function within the domain.  This case is rarely 
encountered with real data.  It is common to segregate the domain into different zones that could be 
defined based on geology, lithology, texture, or other identifiers, with each zone honouring the 
assumption of stationarity.  If such segregation is possible, statistics such as the mean must vary in a 
discontinuous fashion between zones.  In cases where statistics vary continuously, segregation does not 
aid in the removal of non-stationary features and other techniques are needed.  Trend modeling can be 
used to address situations where non-stationarity of the mean and variance is suspected.  In this work, 
use of the word trend is interchangeable with drift. 

Two approaches for trend modeling exist: implicit and explicit techniques.  With implicit 
techniques, only the functional form of a trend is specified, rather than the trend itself.  These techniques 
focus on trends that represent the mean of the random function.  The variance may still exhibit 
heteroscedastic character.  Ordinary kriging (Matheron, 1963; Journel and Huijbregts, 1978; Isaaks and 
Srivastava, 1989) assumes an unknown mean that is a zero order polynomial, that is, a constant 
dependent on spatial location.  More general polynomial forms are possible with universal kriging 
(Huijbregts and Matheron, 1971), also referred to as kriging with a trend (Journel and Rossi, 1989).  
Another class of implicit approach are 𝑘-order intrinsic random functions (IRF-𝑘) (Matheron, 1963; Chiles 
and Delfiner, 1999); however, they are restricted to a specific form of the trend function.  The use of 
generalized covariance functions makes IRF-𝑘 uncommon in practice. 

Explicit techniques model the suspected trend directly.  Often, the trend is removed from the 
original data and we are left with a set of residuals.  A known issue with this approach is the presence of a 
bias in the covariance matrix of the residuals regardless of the form of the trend function (Cressie, 1993; 
Kitanidis, 1993; Beckers and Bogaert, 1998).  The bias always leads to an underestimation of the variance.  
Another issue is that there is no control on the bounds of the predicted random function when the 
residuals are used.  It is possible to predict negative values for strictly non-negative random functions, or 
to predict fractions less than zero or greater than one for random functions with units of concentration or 
percent.  An approach to alleviate this issue was proposed by Leuangthong and Deutsch (2004) and 
involved transforming the random function conditional to the trend via a stepwise conditional transform 
(Rosenblatt, 1952).  Another explicit technique is to utilize the trend as a locally varying mean (LVM), 
although the LVM approach to first-order non-stationary applications is typically not associated with 
geostatistical modeling with a trend. 

This paper focuses primarily on explicit techniques for incorporating a trend into models.  First, 
the concept of bias discussed by Cressie (1993), Kitanidis (1993) and Beckers and Bogaert (1998) is 
revisited to identify a few potential correlations that may be overlooked as well as identify the case where 
the bias does not exist.  Another form of bias explored by Starks and Fang (1982) that is caused by 
underlying trends is also covered and a relation between the variogram of the original variable, trend, and 
residuals is developed.  A few of the approaches to incorporate trends into Gaussian simulation including 
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working with residuals, locally varying mean, and conditional transformation (Gooverts, 1997; Journel and 
Rossi, 1989; Gringarten, Deutsch, 2001; Leuangthong and Deutsch, 2004) are covered, particularly to 
identify the correct variogram to use. 
 
Background 
The idea that a bias exists when making predictions using the residuals obtained from explicit trend 
models is revisited.  In papers where the bias term is formulated (Kitanidis, 1993; Beckers and Bogaert, 
1998), equations for the bias term are developed for generalized regression or ordinary least squares; 
however, an issue is that the typical assumptions involved in application of either of these models do not 
apply to the modeling of trends for spatial geostatistical problems.  A few of the assumptions from linear 
regression that are reasonable include: 
 

1. The model is linear: we must conclude that if linear regression is chosen to model a trend, the 
data have indicated that the response variable can be represented as a linear combination of the 
spatial coordinates as well as any other exhaustive spatial data. 

2. The expected value of the residuals is zero if we assume the response variable is first order 
stationary after removing the trend. 

3. Homoscedasticity: this assumption is viable for normally distributed variables; however, cases 
such as lognormal variables will exhibit heteroscedasticity in the residuals. 

4. Normality of residuals: the distribution of residuals is usually not known, but we often assume it 
is normal, or we transform the residuals to follow a normal distribution. 

Assumptions that do not hold relate to the covariance of the response variable, predictors, and residuals.  
The following assumptions do not necessarily hold: 
 

5. Independent errors: one test to indicate if a regression model is appropriate is to check the 
residuals for any correlated behaviour.  Application of regression for trends in geostatistics rarely 
has this property because we design trends to remove only part of the spatial dependence of the 
response variable.  Short range spatial correlation is not removed and residuals are not 
independent. 

6. Independence of residuals and predictors: trends modeled using regression will result in a 
correlation of zero, but the variables will not be independent due to 5. 

7. Independence of residuals and response: since some spatial correlation is retained in the 
residuals, the response and residuals must be correlated at least up to the correlation length of 
the residuals. 

Considering that there is correlation between residuals and predictors as well as with the response, the -
equations that develop the bias are revisited starting with the representation of the random function 
decomposed into deterministic and stochastic components.  Equation (1) expresses a random function, 
𝑧(𝐮), as the sum of a mean, 𝑋𝛽, and random function (residuals), 𝜀(𝐮), where 𝑋 are design variables, 𝛽 
are weights, and 𝐮 are spatial coordinates. 
 
 ( ) ( )z X β ε= +u u  (1) 

It is common in geostatistics for 𝑋 to contains polynomial functions of 𝐮.  The bias developed in Beckers 
and Bogaert (1998) suggests that the covariance of the residuals, Σε, is always underestimated, even 
when the true form of 𝑋𝛽 or Σε is known.  Assuming the trend component is unknown and predicted 
using ordinary least squares, the residuals are expressed as Equation (2), with �̂� estimated from Equation 
(3). 
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 ˆ( ) ( )z Xε β= −u u  (2) 

 ( ) 1ˆ ( )X X X zβ −′ ′= u  (3) 

 
Rearranging (2) the residuals are expressed as a function of the projection matrix, 𝑃: 
 

 ( )( ) ( )1( ) ( ) ( )I X X X X z I P zε −′ ′= − = −u u u  (4) 

Evaluating the variance of the residuals based on (4) reveals the bias term: 
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The strong assumption that the covariance of 𝑧(𝐮) is equal to the covariance of 𝜀(𝐮) must be made to 
obtain this result; however, this is unreasonable.  Expanding the variance of 𝑧(𝑢) we obtain Equation (6). 
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If and only if 𝑋𝛽 and 𝜀(𝐮) are independent can we obtain the result: 
 
 { } { }( ) ( )Var z Var εε= = Σu u  (7) 

Independence is only obtained if the residuals are independent (assumption 5), that is, if the spatial 
correlation is zero; however, when modeling trends we usually obtain residuals that retain structure.  An 
interesting case to consider is when the trend is a constant equal to zero, or 𝑋𝛽 = 0.  Initially, it would 
seem the bias still exists based on Equation (5), but this is not the case due to the idempotent structure of 
(𝐼 − 𝑃) and knowing that 𝜀(𝐮) = 𝑧(𝐮) when 𝑋𝛽 = 0: 
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The presence of a trend in a random function leads to a biased estimate of the variogram because it 
influences the squared differences calculated for a particular lag (Starks and Fang, 1982).  Typically, the 
bias is observed in the experimental variogram as a significant deviation above the sill.  Observation of 
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such a feature may indicate that trend analysis is warranted.  The form of the bias is essentially the 
variogram of the trend itself; however, it is more complex when there is correlation between the original 
variable and the trend. 

When a trend exists, it is possible to formulate the variogram of the residuals, 𝛾𝜀, as a function of 
the variogram of the original variable, 𝛾𝑧, and of the trend, 𝛾𝑚, where 𝑋𝛽 = 𝑚.  Using Equation (2) for the 
residuals and evaluating for the variogram we obtain the following expression 
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 where the following are implied: 𝑥 = 𝑥𝑢 and 𝑥𝐡 = 𝑥𝐮+𝐡with 𝑥 = 𝜀,𝑚, 𝑧.  Rearranging the terms, the 
expressions for the variogram of 𝑧 and 𝑚 are found: 
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The last term is the covariance based cross variogram (Myers, 1982; Cressie and Wilke, 1998) denoted 
𝜈𝑧𝑚 in Equation (9). 
 
 2z m zmεγ γ γ ν= + −  (9) 

This equation is very similar to that for the additivity of variance for two correlated random variables.  If 
we assume that the trend is a continuous function, then both 𝛾𝑚 and 𝜈𝑧𝑚 will exhibit a parabolic 
behaviour near the origin and the short range structure of 𝛾𝜀 will be very similar to that of 𝛾𝑧 and it will be 
identical at the origin.  This implies that the nugget effect of 𝑧 and 𝜀 are equal. 
 
Gaussian Simulation with Trends 
Several techniques exist for incorporating trends into geostatistical simulation such as working with 
residuals or transformation of a random function conditional to the trend.  A few issues exist in working 
with residuals including the bias in variance already discussed and the possibility of simulating values that 
are beyond the range of feasibility of a random function.  For example, simulation of residuals could lead 
to negative values for a non-negative random function due to the decomposition in Equation (1). 

A few approaches exist to avoid simulating values that are beyond physical limits of a variable: 
instead of using the trend explicitly, it could be used as an LVM, or; the original variable could be 
transformed to an infinite range, for example using a normal score transformation prior to trend 
modeling.  Both of these options typically involves a normal score transform in practice.  There are two 
approaches for simulation with an LVM: 1 – the local mean is assumed stationary in the space spanned by 
the data to be used in kriging (see Equation (10), where 𝑦∗ is the estimate, 𝛌 is the vector of kriging 
weights, 𝐲 is the vector of conditioning data, and 𝑚 is the LVM); 2 – local residuals are calculated from the 
LVM and used in kriging (see Equation (11), where 𝐦 is a vector of LVM values co-located with 𝐲). 
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 * ( ) (1 ) ( )y m′ ′= + −u λ y 1 λ u  (10) 

 * ( ) ( ) ( )y m′= − +u λ y m u  (11) 

 
The second and most common approach is similar to explicit handling of a trend where residuals are 
calculated and used.  The difference is that in the explicit case, residuals are usually computed using the 
original variable and trend via Equation (12), whereas in the LVM case of Equation (11), the original 
variable and trend are normal score transformed independently in Equation (13), where the trend is 
transformed using 𝑧 as a reference distribution. 
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Resulting residuals, 𝜀𝑔 and 𝜀′𝑔, are not equal and there is no guarantee that they retain the same rank 
order.  Moreover, the bivariate distribution between 𝑧 and 𝑚 is not necessarily Gaussian, so the residuals, 
𝜀′𝑔, are not guaranteed to be normally distributed even though the SGS algorithm assumes they are.  The 
normal score transforms in Equation (13) are applied independently because often the LVM is not a trend 
that was modeled directly from 𝑧, but rather it is an exhaustive secondary variable that may not be in the 
same unit space as 𝑧.  During simulation, values of 𝑦 are simulated after adding the trend to the estimate; 
therefore, the resulting back-transformed values are guaranteed to be in the physical range of 𝑧.  This 
tends to result in variance inflation because the variance of 𝑦 is increased by the variance of 𝑚𝑔. 

For Equations (12) and (13), the correct variogram to use should be the variogram of the 
corresponding residuals, possibly debiased based on Equation (5).  It is unclear the form of the bias when 
the residuals are normal score transformed in Equation (12) because the trend and stochastic 
components cannot be decoupled.  In Equation (13), these two components remain decoupled; however, 
the trend is not necessarily derived from linear regression and there is no expression for the projection 
matrix.  The bias can be written in terms of expected values in Equation (14). 
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Incorporating an LVM using the first approach (Equation (10)) also involves normal score transformation 
of 𝑧 and 𝑚 independently.  Since kriging is based on 𝑦, the variogram of 𝑦 should be the correct one; 
however, by admitting that simulation should involve an LVM this indicates the variable is influenced by a 
trend or is non-stationary.  However, the presence of a trend influences variogram interpretation and 
modeling (Starks and Fang, 1982). 

Another approach for incorporating trends into simulation was discussed by Leuangthong and 
Deutsch (2004) and involves transforming the original variable conditional to the trend.  A normal score 
transform would be performed on 𝑧|𝑚 defined in Equation  (15) producing yet another form of residual 
variable for modeling and simulation. 
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 nscore( | )z mε =  (15) 

With this approach it is not possible to simulate grades that are beyond the physical limits of the original 
variable since it is involved directly in the transformation.  Back-transformation will not yield negative 
grades for a non-negative random function for example.  What is unclear is if this transformation process 
yields any biases in terms of the variance or variogram.  Naturally, one would perform the transformation, 
which results in a random function with zero mean and unit variance, and use the variogram of 𝜀. 

The conditional transformation approach and the traditional approach that involves a normal 
score transform of the residuals are very similar in that they result in distributions with similar statistics.  
Both result in a Gaussian distribution with zero mean and unit variance; the correlation between the 
resulting random functions is high; the rank order within any given class of 𝑚 involved in the 
transformation is the same, and; the variograms are similar.  A small example is used to show these 
similarities and involves a 2D set of data with a linear trend in one direction (X) and zero-trend in the 
perpendicular direction (Y), see Figure 1.  There is a significant amount of data (10,000 samples) so that 
the conditional transformation is well informed. 

The samples were uniformly sampled from a 200 by 200 cell regular grid so that choosing the 
bins for the conditional transformation was straightforward.  Each column of cells with constant 𝑥 forms a 
bin since the trend is constant in 𝑦.  All the data in each column is normal score transformed according to 
Equation (15) .  There were nominally 50 samples in each class.  Statistics of 𝑧|𝑚 and traditional residuals 
are shown on Figure 2.  Both distributions are Gaussian; however, due to the limited number of samples 
in each bin of the conditional transform, the tails are not fully informed.  This is due to the numerical 
nature of the normal score transform and to the uniformity of the number of samples in each bin. 

Because the correlation coefficient between the two random functions is high, 0.973, the 
variograms must be similar.  These are shown in Figure 3 in the 𝑥 and 𝑦 directions for the original variable, 
trend, normal scored residuals, and conditional transformed values.  In the 𝑦 direction, the variograms of 
𝑧, the normal scores of 𝑧 − 𝑚 and of 𝑧|𝑚 are very similar.  In the 𝑥 direction, the variograms of 𝑧 − 𝑚 and 
𝑧|𝑚 are similar, whereas the variogram of 𝑧 clearly shows the effect of the trend.  The only notable 
difference between the variograms of 𝑧 −𝑚 and 𝑧|𝑚 is the apparent nugget effect of the conditional 
transformed variable.  This is caused by binning 𝑧 based on 𝑚 and by the normal score transform.  The 
normal score transform is usually applied using the empirical cumulative distribution function of a set of 
data, which provides the probabilities required to compute the equivalent Gaussian values.  As the 
number of data decreases, the differences between nearby pairs of Gaussian values increases, hence the 
variogram increases.  Binning also has an effect because it leads to a loss in continuity across the bin 
boundaries, hence the increased nugget effect.  A conditional transformation that does not utilize bins 
may eliminate this source of short range variability. 
 
Conclusion 
One approach to account for first order non-stationarity in Geostatistics is to use a trend model.  There 
are several techniques available for incorporating a trend, this paper discussed three explicit ones 
including the traditional approach that uses residuals, using the trend as an LVM, and using a conditional 
transformation approach.  In all cases, the correct variogram to use is the variogram of the residuals.  This 
result was clear for the traditional approach, but has not been done in practice with LVM’s.  For the 
conditional transformation approach, it seems that the variogram of the normal score residuals and of the 
conditional transformed variable are nearly identical and either variogram could be used in practice; 
however, more complex examples may yield a different result. 
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Figure 1: Sample data for assessing the conditional transformation approach. 
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Figure 2: Cross plot of variables from the conditional transform and from the normal score transform of 

traditional residuals. 

 
Figure 3: Variograms of the input model, original variable, trend and residuals for the example. 


