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Optimizing Thresholds in Truncated Pluri-Gaussian Simulation 
 

Samaneh Sadeghi and Jeff B. Boisvert 
 

Truncated pluri-Gaussian simulation (TPGS) is an extension of truncated Gaussian simulation. This method 
is used to generate facies realizations and define complex contacts between facies. The data are recoded 
as Gaussian values, simulated and then transformed back into facies by rules which control truncations. 
The probability of each facies and the transition probability between facies are determined by the 
truncation rules. The proposed methodology is to start with initial thresholds and optimize them to find 
the optimal truncation rules.  Optimality is defined by an objective function which assesses the transition 
probabilities between facies while preserving the desired proportions. This paper presents a method to find 
the optimum values for thresholds when a complex configuration between facies is required. The 
optimization procedure is illustrated on a synthetic example.  
 
Introduction 
Truncated pluri-Gaussian simulation has been used to create categorical models used in typical 
geostatistical workflows. The method is to simulate one or more continuous Gaussian realizations and 
truncate them in order to produce a categorical variable. The truncation rules control the resulting 
features in the realizations.  The principle of this method was published in Galli et al. (1994). Statistical 
inference of the variograms underlying the Gaussian realizations is given in Galli et al. (1994). 
 The pluri-Gaussian method allows for additional flexibility when deciding on facies interactions. 
Properties of this method with a view in implementing the algorithm both for practical structural analysis 
and conditional simulation were studied by Le et al. (1996). Currently this technique is used in the 
petroleum (Remacre and Zapparolli 2003) and mining industries (Fontaine and Beucher 2006).  The 
following parameters should be defined for implementing truncated pluri-Gaussian simulation (Le Loc’h 
and Galli, 1994): 
1) The number of Gaussian random functions (each of them with zero mean and unit variance). 
2) The matrices of covariance and cross-covariance, which fully define the spatial variability model of the 
Gaussian functions. 
3) The threshold mask to transform the set of Gaussian realizations into a unique discrete facies 
realization.  
 In general, M Gaussian realizations can be used to define the relationship between facies. The 
relationships between neighboring facies can be more complex than is considered in the standard 
truncated Gaussian model (Galli et al., 1994). In this work, we propose to optimize the threshold mask in 
order to match desired statistics such as the transition probabilities between facies, proportions, etc.  The 
inference of these statistics would like come from data, geological interpretations or training images.  
 
Truncation and Thresholds in Pluri–Gaussian 
 When the number of Gaussian functions is two, truncation is characterized by the partition of the 
plane defined by the Gaussian realizations. Any number of combinations of facies can be considered. As 
the relationships between facies become increasingly more complex, the truncation rules have to be 
flexible to account for the relationships. Here we use M=2 independent Gaussian realizations 1z  and 2z . 
They have a spherical variogram model, and present North-South anisotropy. Both realizations have a 0 
mean and a variance of 1 and three facies (Figures 1 and 2).  This model is used as the truth and is 
sampled randomly; these samples are used to demonstrate the optimization algorithm presented below. 
 After generating the Gaussian realizations, the next step is to map the realizations to the desired 
facies. In Figure 2 the initial realizations for 1z , 2z  and the truth pluri-Gaussian realization is shown. The 
facies variable can take more than two values, more than one threshold is defined, nf-1 thresholds for nf 
possible facies. 
 Let a point in the simulation domain be defined by x and let 1Fi   be indicators of the thi  facies 

Fi . In general case, the following condition is satisfied: 
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where it is the thi threshold and M Gaussian realizations define a space with M dimensions. Let iD be the 
subset of the Gaussian space. Here we consider two independent simulated Gaussian realizations and 
assume nf=3 of facies and define 2 arbitrary thresholds (Figure 1).  
 Now we can determine the proportion of each facies at point x. Let G be the standard normal 
cumulative density function. The probability of having facies Fi   at point x can write as: 
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where 1( ,..., )Mg z z∑  is the M-variate standard Gaussian function with mean 0 and variance 1,   ∑ is 

the correlation matrix. 
 There is a one to one relation between proportions and thresholds. Accordingly, knowing the 
univariate distribution of the Gaussian realizations, it is straightforward to deduce the set of truncation 
thresholds that match the desired facies proportions. This is not the case if nonlinear truncation 
thresholds are considered as well. 
 
Transition probability 
Transition probability can be used instead of the indicator cross-variogram as the measure of spatial 
variability. Transition probability ( )ijt h  is defined by  

( ) Pr{ | } (5)ijt h j occurs at x h i occurs at x= +  

where x is a spatial location, h is the lag (separation vector), and i, j denote mutually exclusive categories 
such as geologic units or facies ( hx x h→ +  ). The transition probability approach considers all 
transitions between facies and allows for the possibility of asymmetry, ( ) ( )ij ijt h t h≠ − . 

 Conditional transition probability is probability of being in facies Fj  at point x+h knowing that x 
is in a given facies: 
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 The transition probability matrix can be defined as a bivariate probability. Markov chain methods 
prepare a more general framework and under stationary assumption, the “first-order” Markov chain is 
considered. In the “first-order” Markov, the chain current state is dependent only upon one previous 
state. (Krumbein, 1970- Li and Zhang, 2008). 

Indicator cross-variogram with indicator variable 1
( )

0i

if category i occur at x
I x

otherwise


= 


  defined as:  

1( ) {[ ( ) ( )][ ( ) ( )]} (7)
2ij i i j jh E I x I x h I x I x hγ = − + − +  
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The transition probability in 80 different lags is considered and data are horizontally scanned. In the next 
step the objective function based on transition probabilities to optimize thresholds is built. 
 
Case study 
First, two independent Gaussian realizations ( 1z & 2z ) are defined in 2 dimensions (Figure 2). These two 
realizations have been used as the exhaustive model. When considering two Gaussian distributions, 
truncation can be defined by the thresholds of the two Gaussian realizations. Figure 1 shows the 
thresholds considered.  
 Both realizations are 200x200 blocks of size 1x1. Table 1 summarizes the properties of two 
Gaussian realizations. These realizations are used to generate the facies realizations with the given 
thresholds, nf=3, t1=-0.1 and t2=0.9.  The proportion of each facies is given in Table 2. 
 

Table1: Properties of two Gaussian realizations 
Simulated Nugget 

Effect 
Maximum 
continuity 

Minimum 
continuity 

Realization 1 0.1 50 20  

Realization 2 0.1 80 10 

 
Table2: Facies proportion of data 

Facies  F1 F2 F3 
Proportion 0.125   0.207   0.668 

 
 Based on data extracted from the exhaustive model, two conditional Gaussian realizations have 
been generated with a similar variogram (Figure 4).  The goal is to determine the thresholds that will best 
characterize this realization given the input sample data. 
 The objective function is defined by the sum of the square differences between transition 
probability of the data ( ( )d

ijt h ) and the simulated realizations ( ( )r
ijt h ) given a particular threshold. This 

objective function measures the mismatch: 

2( ( ) ( ) ) (8)
nTP nF nF

d r
ij ij

h j
O i t h t h= −∑∑ ∑
where nTP is the number of lags and nF is the number of facies. The thresholds values are adjusted to 
minimize the objective function while preserving the target proportions. The procedure is done for 53 
different values in the range of [-3, 3] for both thresholds (Figure 3).   The optimum value is obtained by 
t1=-0.2 and t2=1.1 which are close to the initial thresholds for the exhaustive realization.  
 For optimizing the threshold, the rock type rule that produces facies by intersecting lines as 
thresholds has been applied but the goal is to consider an arbitrary facies mask rather than being limited 
by linear thresholds.  This will provide additional flexibility when characterizing the interactions between 
facies but is difficult to optimize.  The first step in this procedure consists of finding the bivariate 
distributions between two Gaussian realizations, 1z & 2z (Figure 5). 
 The goal would be to consider the optimization of the mask rather than linear thresholds. To 
obtain the optimum thresholds, initial thresholds of t1=-0.15 and t2=1.1 are selected.  Randomly, n bins in 
the boundaries between facies were selected and changed to the other facies (Figure 6) while honoring 
the input proportions. A random starting configuration could also be selected (Figure 6).  Considering 500 
changes per iteration resulted in the optimum objective function (Figure 7). By this method, we are able 
to find the optimum thresholds in the linear cases.  
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Conclusion 
Truncated pluri-Gaussian simulation of facies has been used to set up the underlying geological model and 
prepare a good method to deal with complex relationships between facies. The boundaries between 
different facies on the mask are important. In this paper, a method for optimizing thresholds by changing 
facies specifications in the mask was proposed.  Further testing on more realistic facies configurations is 
required.  The main advantage of this method is its application in determining the facies mask for more 
complex configuration.  
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Figure 1: Example of thresholds mask for three facies. 
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Figure 2: Initial realization 1z and realization 2z  and pluri-Gaussian facies realization. 

 
 

 
 

Figure 3: Pixel plot of objective values. 
 
 
 

 
 
Figure 4: Conditional simulated realization 1z  and Conditional simulated realization 2z  and pluri-
Gaussian facies. 
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Figure 5: Scatter plot and bivariate distribution of two realizations. 
 

 
Figure 6: Complex facies mask showing linear and arbitrary thresholds.  Potential locations for optimizing 
the mask are shown as solid and hollow cells. 
 

 
Figure 7: Objective function evaluation based on number of changing in the facies realization. 


