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Applications of Randomized Methods for Decomposing and Simulating from 
Large Covariance Matrices 

Vahid Dehdari and Clayton V. Deutsch 

 
Geostatistical modeling involves many variables and many locations.  LU simulation is a popular method for 
generating realizations, but the covariance matrices that describe the relationships between all of the variables and 
locations are large and not necessarily amenable to direct decomposition, inversion or manipulation. This paper 
shows a method similar to LU simulation based on singular value decomposition of large covariance matrices for 
generating unconditional or conditional realizations using randomized methods. The application of randomized 
methods in generating realizations, by finding eigenvalues and eigenvectors of large covariance matrices is 
developed with examples. These methods use random sampling to identify a subspace that captures most of the 
information in a matrix by considering the dominant eigenvalues. Usually, not all eigenvalues have to be calculated; 
the fluctuations can be described almost completely by a few eigenvalues.  The first 𝑘 eigenvalues corresponds to a 
large amount of energy of the random field with the size of 𝑛 × 𝑛. For a dense input matrix, randomized algorithms 
require 𝑂(𝑛𝑛𝑙𝑜𝑔(𝑘)) floating-point operations (flops) in contrast with 𝑂(𝑛𝑛𝑘) for classical algorithms. Usually the 
rank of the matrix is not known in advance. Error estimators and the adaptive randomized range finder make it 
possible to find a very good approximation of the exact SVD decomposition. Using this method, the approximate 
rank of the matrix can be estimated. The accuracy of the approximation can be estimated with no additional 
computational cost. When singular values decay slowly, the algorithm should be modified for increasing efficiency 
of the randomized method. If the first 10000 eigenvalues represent 95% of energy of random field with size of 
106 × 106, using power method only the first 1000 eigenvalues can represent 95% of the energy of the random 
field. Comparing to the original algorithm, the power method can decrease computational time, and significantly 
increase the accuracy of approximation. 
 
Introduction 
Sequential Gaussian simulation is a popular method for generating realizations. This method is based on recursive 
application of Bayes law. There are two problems related to this method. The cost of generating n realization is n 
times of cost of generating one realization. Generating one realization can be reasonably fast, but if 100 
realizations are to be generated, it can be time consuming. Second, reproducing long range variogram structures 
using this method is sometimes difficult. LU simulation is another method that can be used for generating 
unconditional or conditional realizations (Alabert, 1987; Davis, 1987). This method is based on decomposing the 
covariance matrix. This method reproduce covariance matrix and once covariance matrix decomposed, generating 
large number of realization can be done without significant cost. For this reason, covariance matrix should be 
defined which contains covariance between data to data 𝐶11, data to unsampled nodes 𝐶12 and unsampled  node 
to unsampled  nodes 𝐶22. This covariance matrix has the following form: 
 

C = �C11 C12
C21 C22

� (1) 

 
In this matrix 𝐶12 = 𝐶21𝑇 . If there are n data and 𝑁 unsampled nodes, 𝐶11 is 𝑛 × 𝑛, 𝐶12  is 𝑛 × 𝑁 and 𝐶22 is 𝑁 × 𝑁. 
For this reason, one or more theoretical covariance models can be fitted on variogram of experimental data. After 
finding a suitable covariance model, the covariance between different nodes can be found based on the distance 
between them.  For generating realizations, the covariance matrix can be decomposed to the following form using 
Cholesky decomposition: 

𝐶 = 𝐿𝑈 = �𝐿11 0
𝐿21 𝐿22

� �𝑈11 𝑈12
0 𝑈22

� (2) 

 
For generating unconditional realizations, instead of finding the full covariance matrix, only the covariance matrix 
between nodes, 𝐶22, should be found. As shown in Eg.2, Cholesky decomposition is a popular method when we 
have a symmetric and positive definite matrix. Another popular method is eigenvalue-eigenvector decomposition. 
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For finding the Cholesky decomposition, diagonal elements of the L matrix can be found using the following 
formula 

𝑙𝑗,𝑗 = (𝑐𝑗,𝑗 − ∑ 𝑙𝑗,𝑘
2𝑗−1

𝑘=1 )1/2. (3) 
 
Then, remaining elements can be computed using the following formula: 
 

𝑙𝑖,𝑗 =
1
𝑙𝑗,𝑗

�𝑐𝑗,𝑖 −� 𝑙𝑖,𝑘𝑙𝑗,𝑘

𝑗−1

𝑘=1

�. 
(4) 

 
After that unconditional realization can be generated using the following formula: 
 

𝑚𝑖 = 𝐿22𝑧𝑖 (5) 
 
Where 𝑧𝑖  is random vector from Gaussian distribution with zero mean and unit variance. It is easy to show that the 
generated realization have a zero mean and a covariance matrix 𝐶. 
 

𝐸[𝑚𝑖] = 𝐸[𝐿22𝑧𝑖] = 𝐿22𝐸[𝑧𝑖] = 0 (6) 
 

𝐸[(𝑚𝑖)(𝑚𝑖)𝑇] = 𝐿22𝐸�𝑧𝑖𝑧𝑖𝑇�𝐿22𝑇 = 𝐿22𝐿22𝑇 = 𝐶22 (7) 
 
For generating conditional realizations, the following formula can be used: 
 

𝑧𝑠(𝑢) = 𝑧𝑘∗(𝑢) + [𝑧𝑢𝑐(𝑢) − 𝑧𝑢𝑐∗ (𝑢)]. (8) 
 
Where 𝑧𝑘∗(𝑢) can be found by kriging using the data values and 𝑧𝑢𝑐∗ (𝑢) can be found by another kriging using 
unconditional simulated values at the same location as data. Also 𝑧𝑢𝑐(𝑢) is an unconditional realization. 
There are two problems related to the LU decomposition: 

1- Accumulated roundoff errors can cause imaginary values in the right hand side of Eq.3 for poorly 
conditioned covariance matrix (Oliver, 2008). 

2- When the covariance matrix is very large, full decomposition needs a very large additional storage and 
CPU time. In this case, decomposition cannot be done. 

But as an advantage, this method can reproduce the mean and covariance matrices very well. 
As another approach, Davis proposed the following method for generating conditional realization in just 

one step (Davis, 1987). In this method by decomposing the original covariance matrix which contains information 
about covariance among all of grids and data, conditional realizations can be generated easily. Assume 
 

�
𝑦1
𝑦2� = �𝐿11 0

𝐿21 𝐿22
� �
𝑧1
𝑧2� 

(9) 

 
In above equation, 𝑦1 is 𝑛 × 1 column vector of normal score of conditioning data, 𝑦2 is 𝑁 × 1 column vector of 
required simulation values. From this system of equations 𝑧1 = 𝐿11−1𝑦1can be found. Also 𝑧2 is 𝑁 × 1 vector of 
independent normal score data from Gaussian distribution. By replacing this equation into the second equation 
vector of required simulation values can be found from the following equation 
 

𝑦2 = 𝐿21𝐿11−1𝑦1 + 𝐿22𝑧2 (10) 
 
The eigenvalue-eigenvector decomposition (SVD or singular value decomposition) can be used to decompose the 
matrix. In this method, the following equation should be solved: 
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𝐶22 𝑈 = 𝑈𝛬 
 

(11) 

𝑈 is the matrix of eigenvectors - each column of 𝑈 is one eigenvector of covariance matrix. 𝛬 is a diagonal matrix 
of eigenvalues; each element on the diagonal is one of the eigenvalues. These eigenvalues are ordered so that the 
first one is the largest one and they decrease to zero. The number of non-zero eigenvalues is the rank of matrix. If 
both sides are multiplied by 𝑈𝑇  
 

𝐶22  = 𝑈𝛬𝑈𝑇 = 𝑈𝛬1/2𝛬1/2𝑈𝑇 = (𝑈𝛬1/2𝑈𝑇)(𝑈𝛬1/2𝑈𝑇)𝑇 
 

(12) 

One symmetric square root of covariance matrix is 𝑈𝛬1/2𝑈𝑇 and another is 𝑈𝛬1/2. These symmetric square roots 
of the covariance matrix are equivalent to the 𝐿 matrix in Cholesky decomposition. 
New unconditional realizations can be generated using the following formula: 
 

𝑦 = 𝑈𝛬1/2𝑧 
 

(13) 

where 𝑧 is a vector from 𝑁(0,1). Again expected value of 𝑦𝑦𝑇  is equal to 𝐶. 
In contrast to LU decomposition, in this case 𝑈𝛬1/2 is not triangular and previous approach cannot be used for 
generating conditional realizations. Assume that: 
 

UΛ1/2 = �A B
C D� 

 

(14) 

In this case, If there are n data and 𝑁 unsampled node, 𝐴 is 𝑛 × 𝑛, 𝐵  is 𝑛 × 𝑁, 𝐶  is 𝑁 × 𝑛  and 𝐷 is 𝑁 × 𝑁. 
Conditional simulation can be found from the following formula: 
 

y = �
y1
y2� = �A B

C D� �
z1
z2� 

 

(15) 

𝑧1 can be found in a way that 𝐴𝑧1 + 𝐵𝑧2 = 𝑦1. From this formula: 
 

𝑧1 = 𝐴−1(𝑦1 − 𝐵𝑧2) 
 

(16) 

Again 𝑧2 is 𝑁 × 1 vector of independent normal score data from Gaussian distribution. As a result, conditional 
simulation can be found from the following formula: 
 

y = �
y1

CA−1(y1 − Bz2) + Dz2
� 

 

(17) 

In this case, the matrix A usually is much smaller than the size of covariance matrix and its inverse can be found 
easily. 

Usually Cholesky decomposition is faster than SVD decomposition, but as we mentioned before, if the 
dimension of covariance matrix is large, decomposing the covariance matrix would be impossible. To prevent this 
problem, this paper introduces a randomized low rank approximation method for decomposing the covariance 
matrix. 

The most important reason for using SVD decomposition instead of LU decomposition is to permit the use 
of randomized low rank approximation methods. Using this method, the SVD decomposition or inversion of large 
matrices can be done very fast. In the next section, the application of randomized methods for decomposing large 
matrices will be presented. 
 
Randomized Low Rank Approximation 
Randomized method allows designing provably accurate algorithms for very large or computationally expensive 
problems. This method has been investigated by many authors (Halko et al, 2011; Liberty et al, 2007; Martinsson 
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et al, 2010; Rokhlin et al, 2009). This method is very popular method in computer science for image processing. In 
this method, by randomized sampling of rows or columns of a matrix, a new matrix can be found that is much 
smaller in size than the original matrix and captures most of the action of that matrix in a subspace. Using this 
method, the original matrix can be restricted to the subspace and then decomposition can be done in a subspace 
using standard factorization methods such as QR or SVD decomposition. Assume that rank of a matrix is R. In this 
case this matrix has R eigenvalues greater than zero. Using the randomized low rank approximation method, the 
approximated SVD decomposition of this matrix can be found by considering the first k dominant eigenvalues. This 
is called rank-k approximation of this matrix. The energy of a system can be defined as a summation of the first 𝑘 
largest eigenvalues divided by summation of all of eigenvalues.  Usually by considering 90-95% of the energy of a 
system, a reasonable approximation of the matrix decomposition can be done without missing major variabilities. 
Random sampling from a matrix A with size 𝑚 × 𝑚 can be done by multiplying this matrix by another matrix Ω 
which has the size of 𝑚 × 𝑘 and has been drawn randomly from the Gaussian distribution. Then, instead of 
decomposing the original matrix, this matrix which has much smaller size than the original matrix should be 
decomposed. If 𝑌 = 𝐴Ω,  in this case matrix Y can be decomposed to the Q and R: 
 

𝑌 = 𝑄𝑅 = [𝑄1 𝑄2] �𝑅10 � = 𝑄1𝑅1 (18) 

 
If Y has dimension of 𝑚 × k, 𝑅1 is a 𝑘 × 𝑘 upper triangular matrix, 𝑄1 is 𝑚 × 𝑘, 𝑄2 is 𝑚 × (m − 𝑘) and 𝑄1 and 𝑄2 
both have orthogonal columns. 𝑄2 matrix is related to the null space of matrix Y. QR factorization of Y is equal to 
the QR factorization of A in the subspace which is approximate decomposition of matrix A in the full space. If SVD 
decomposition of A is needed, matrix B can be found such that 𝐵 =  𝑄𝑇𝐴. Finally SVD decomposition of matrix A 
can be found from full SVD decomposition of matrix B which has much smaller size than the original matrix. In 
below you can see a basic algorithm of randomized method for decomposing matrix 𝐴 with size of 𝑚 × 𝑛 (Halko et 
al, 2011): 
 

1. Draw an 𝑚 × 𝑘 Gaussian random matrix Ω. 
2. Form the 𝑚 × 𝑘 sample matrix 𝑌 = 𝐴Ω. 
3. Form an 𝑚 × 𝑘 orthonormal matrix 𝑄 such that 𝑌 = 𝑄𝑅. 
4. Form the 𝑘 × 𝑚 matrix 𝐵 =  𝑄𝑇𝐴. 
5. Compute the SVD of the small matrix 𝐵: 𝐵 = 𝑈�Σ𝑉𝑇. 
6. Form the matrix 𝑈 = 𝑄𝑈�. 

 
In terms of computation cost, assume that the first k eigenvalues of a dense matrix with the size of 𝑚 × 𝑚 should 
be approximated. In this case, randomized algorithms require 𝑂(𝑚𝑚𝑙𝑜𝑔(𝑘)) floating-point operations (flops) in 
contrast with 𝑂(𝑚𝑚𝑘) for classical algorithms. Also randomized methods usually required a constant number of 
passes over the original matrix instead of 𝑂(𝑘) passes for classical algorithms (Halko et al, 2011). 

Although using this method, large covariance matrices can be decomposed pretty fast, but as a limitation, 
computing and storing very large covariance matrices is very difficult and it should be fitted on the machine 
memory.  

When singular values decay slowly, the algorithm should be modified to increase efficiency of the 
randomized method. For this purpose, the power method can be used. Assume that matrix A should be 
decomposed and its eigenvalues decay slowly. Comparing to the original algorithm, the power method can 
significantly increase the accuracy of approximation. For solving this problem, instead of decomposing matrix A, 
matrix B can be decomposed: 
 

𝐵 = (𝐴𝐴∗)𝑞𝐴 (19) 
 
𝐴∗ is the conjugate transpose of matrix A and q is an integer which is called the power. Both matrices A and B have 
the same singular vectors, but singular values of matrix B decay much faster than matrix A (Martinsson et al, 2010; 
Rokhlin et al, 2009). If the ith singular value shows with the notation 𝜎𝑖  then: 
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𝜎𝑖(𝐵) = (𝜎𝑖(𝐴))2𝑞+1 (20) 
 
In some cases, if the first 10000 eigenvalues represent 95% of the energy of the random field with size of 
106 × 106, using the power method entails that approximately the first 1000 eigenvalues could represent 95% of 
the energy of the random field.  Due to the large size of the matrix A, finding (𝐴𝐴∗)𝑞𝐴 is almost impossible, this 
expression typically can be evaluated via alternating application of A and 𝐴∗. In this case, after finding 𝑌 = 𝐴𝛺, QR 
decomposition of Y without significant computation cost can be found. Matrix Q is orthogonal and it is 
approximated QR decomposition of matrix A. Therefore 𝑄𝑄∗ = 𝐼 and as a result 𝐴 ≈ 𝑄𝑄∗𝐴. Matrix 𝑄 has much 
smaller size than matrix A. Then in an iterative procedure without any significant cost (𝐴𝐴∗)𝑞𝐴 can be found. 

The algorithm of randomized subspace power method is summarized by the following (Halko et al, 2011): 
 

1- Draw an 𝑛 × 𝑘 Gaussian random matrix Ω. 
2- Form 𝑌0 = 𝐴Ω and compute its QR factorization 𝑌0 = 𝑄0𝑅0 
3- For j=1,2,…q  where q is integer power 

    Form 𝑌𝚥� = 𝐴𝑇𝑄𝑗−1 and compute its QR factorization 𝑌𝚥� = 𝑄𝚥�𝑅𝚥�  
    Form 𝑌𝑗 = 𝐴𝑄𝚥� and compute its QR factorization 𝑌𝑗 = 𝑄𝑗𝑅𝑗 
End 

4- 𝑄 = 𝑄𝑞       
5- Form the 𝑘 × 𝑛 matrix 𝐵 =  𝑄𝑇𝐴. 
6- Compute the SVD of the small matrix 𝐵: 𝐵 = 𝑈�Σ𝑉𝑇. 
7- Form the matrix 𝑈 = 𝑄𝑈�. 

 
This method is much more efficient than the original method and increases accuracy of approximation 
significantly. It works very well for problems where the singular values decay slowly. Usually q=2 or 3 is a good 
choice. Larger q will not significantly improve estimation. 

There are different challenges in using this method. First, before full decomposition of a matrix, the 
eigenvalues are unknown. As a result finding the total energy of the system for computing the fraction of energy 
we in the approximation is a problem. Second, the rank of the matrix is unknown in advance, so the number of 
eigenvalues for a good estimation is not known in advance. In the case of decomposing the covariance matrix, a 
solution of the first problem can be found easily. In this case, as an advantage of the covariance matrix, summation 
of eigenvalues is equal to the trace of covariance matrix, which is the summation of the elements on the diagonal. 
Because these values are equal to the variance, even before finding the covariance matrix, the total energy of the 
system can be easily found. Assume that the dimension of a covariance matrix is 50000 × 50000 and variance of 
the standard normal data is 1, in this case total energy of the system is equal to 50000. After finding approximate 
decomposition, the summation of the eigenvalues can be found easily. In order to find the fraction of energy we 
used for simulation, this value can be divided by the total energy of the system.  

Regarding the unknown rank of the matrix, the randomized range finder can be used. This method starts 
with an initial guess. Usually for a matrix with the size of 50000 × 50000, the first 1000 eigenvalues are enough 
for approximating at least 90% energy of the system. We can start with k=1000 and by finding fraction energy of 
the system, if energy was not enough, the number of eigenvalues can be increased gradually to find a reasonable 
approximation.  

As another test, the accuracy of the approximation can be estimated with no additional computational 
cost (Halko et al, 2011). This can be done by finding ℓ2 norm of a matrix which is difference of original matrix and 
approximate matrix: 
 

‖𝐴 − 𝑈Σ𝑉𝑇‖ = ‖𝐴 − 𝑄𝑄𝑇𝐴‖ < 𝜀 (21) 

 
The spectral norm of a matrix is the largest eigenvalue of that matrix. This is similar to the rank-1 approximation of 
that matrix which can be found very fast. For finding a good approximation, 𝜀 should be a small number.  
Using these methods, the accuracy of estimation can be estimated easily. 
 

http://en.wikipedia.org/wiki/Singular_value
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Results and discussion 
The efficiency of this method has been considered with several examples. This method is very efficient when the 
size of the covariance matrix is very large. Once a matrix can be generated, decomposing it with this method is 
possible and the accuracy of the method can be made acceptable. The only problem is related to the storage of 
large matrices. Full decomposition of that matrix is another important problem. If the size of the matrix is very 
large, full decomposition of that matrix is almost impossible or at least takes several hours. In the case of using 
Cholesky decomposition, using double precision variables is necessary. As we mentioned before, roundoff error is 
one of the problems of this method, but in the case of SVD decomposition, there is no problem with roundoff error 
and the matrix does not need to be positive definite. Even for storing a larger matrix, single precision variables can 
be used to decrease the memory usage.  

The goal of this paper is to compare the efficiency of a randomized method with Cholesky decomposition, 
different synthetic examples with reasonable size have been considered. The dimension of the domain in these 
examples is  230 × 230 blocks. In this case, size of covariance matrix would be 52900 × 52900 and it has about 
2.8 billion elements. This was the largest matrix that I could decompose with the LU simulation. Larger matrix can 
be created and decomposed using randomized methods, but because the goal of this paper is comparing the 
efficiency of these methods, this example is large enough for this reason.  

For the first example, a random field has been generated with variance 1 and also exponential covariance 
matrix. Using unconditional simulation and just by decomposing the C22 in the covariance matrix, one realization 
for both of LU and randomized SVD has been generated. In this example, correlation range is 60 blocks. This range 
is equal to practical range of covariance matrix. SVD used the first 2000 eigenvalues for generating the result. In 
this case, full decomposition has 52900 eigenvalues, but the first 2000 eigenvalues equal to about 93% energy of 
the system. In this case, the spectral norm is less than 0.01 which shows a good precision. Fig.1 shows result of 
each method. 

As Fig.1b shows, randomized algorithm eliminated very short variabilities. It means that if correlation 
range is very small, very small eigenvalues should not be eliminated. In this case, more eigenvalues should be 
considered for storing 95% energy of that system. In the limiting case, when correlation range is zero, none of 
eigenvalues are zero. In this case, covariance matrix would be a diagonal matrix and its decomposition using 
Cholesky, even if the matrix is very large, would be very fast. As a result, if range is very small (which is rare in the 
real cases) using Cholesky decomposition could be a better choice. What is important in the simulation is 
histogram and variogram reproduction. Fig.2-3 show histogram and variogram comparisons using both of 
methods. 

Usually histogram reproduction is not a big problem in the simulation. As you can see, Fig.2 shows 
comparison between reproduced histograms using both methods. In this case both of histograms are normal and 
they are pretty the same. 

In Fig.3, five realizations generated for each method. Red dashed lines are variograms of simulated 
realizations using randomized SVD, blue dashed lines are variograms of simulated realizations using Cholesky 
decomposition and gray solid line is theoretical variogram. It seems that average of variograms in both methods 
can reproduce theoretical variogram. 

A small correlation range means the eigenvalues will decay slowly and by increasing the range, they will 
decay very fast. For smaller ranges, the power method can be used for increasing the decay rate. Using power 
method may increase computation time a little bit which is not significant, but it can solve problem related to the 
slow decay rate. As another solution, the number of desired eigenvalues can be increased. For example if 2000 
eigenvalues can give 0.95 energy of a system for range 70, 3000 eigenvalues can give this amount of energy for 
range 40. The best results can be found by increasing the number of desired eigenvalues and also power 
simultaneously. Instead of selecting 3000 eigenvalues with power equal to 2, 2500 eigenvalues can be selected 
with power equal to 3. Fig.4 shows changing in the fraction energy of the system with changing the correlation 
range. Power of 3 has been selected for all of these figures, for this reason decreasing the range does not have a 
significant effect on the fraction of energy of the system using the first 2000 eigenvalues. The first 200 eigenvalues 
with a range 90 gives about 85% energy of the system, but with a range of 50 gives only about 70% energy of the 
system. 

This method is very efficient in terms of matrix decomposition. Even for this small example, the run time 
of the Cholesky decomposition was more than 1.5 hours, but randomized SVD method decomposed the covariance 
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matrix in 20 minutes for finding the first 2000 eigenvalues. A small change in the number of desired eigenvalues 
does not change the computation time significantly. 

Unconditional realizations were generated for a random field with the size of 230 × 230 blocks with the 
correlation range of 30 blocks using a Gaussian covariance matrix. Fig.5 shows the generated realization and the 
decay rate of the eigenvalues. 

As shown in Fig.5, although a small range was selected for this case, the rate of eigenvalues decay is very 
fast. Only with the first 400 eigenvalues 99.99% of the energy of the system has been stored. All other eigenvalues 
have very small values. They are smaller than the order of 10−4 and they do not have any significant effect on the 
estimations. This example shows that rate of eigenvalues decay in the Gaussian covariance is too fast. This finding 
confirms the results of Frauenfelder et al, 2005 and Efendiev et al, 2007 about rate of eigenvalues decay in 
different covariance matrices. They showed that eigenvalues of a Gaussian covariance matrix decay exponentially 
fast in contrast to the eigenvalues of an exponential covariance matrix which may decay slowly. Even by selecting a 
larger range, e.g. 65 blocks, the first 150 eigenvalues can show 99.99% energy of the system. Full decomposition 
can give exactly the same realization. Suppose that there is a very large field with very large covariance matrix. In 
this case, using the first 1000 eigenvalues, large number of realizations can be generated very fast. Nice thing 
about the LU or SVD simulation methods is that once covariance matrix decomposed, large number of realizations 
can be generated with a negligible computation time. 

The last covariance function that we considered in this paper is spherical covariance function. As we 
considered different examples, we noticed that rate of eigenvalues decay for spherical covariance is not as fast as 
the Gaussian covariance, but it is faster than exponential covariance function. Again, same as the first example, 
one unconditional realization for a random field with the size of 230 × 230 blocks with the range of 50 blocks 
using the spherical covariance matrix generated. Fig.6 shows comparison between generated realizations using 
Cholesky and randomized SVD methods. 

The histogram and variogram reproduction for both the Gaussian and spherical covariance functions was 
satisfactory. The most difficult case is related to the exponential covariance function which cause eigenvalues to 
decay slower than other types. 

For the last example, a conditional simulation example has been considered. For this purpose, a synthetic 
model with the size of 230 × 230 blocks with the range of 50 blocks using the exponential covariance matrix 
generated. As we showed before, due to the small decay rate of eigenvalues, exponential covariance is the most 
challenging type of covariance function. Fig.7 shows location map of data, generated realizations using LU and SVD 
and also variogram reproduction. 

Based on the Cholesky and SVD formulations, all of the data can be reproduced after simulation. Also as 
you can see, for five different realizations the average of the variograms reproduce the input variogram, so 
covariance reproduction has been done satisfactorily. Again red dashed lines are variograms of simulated 
realizations using randomized SVD, blue dashed lines are variograms of simulated realizations using Cholesky 
decomposition and gray solid line is theoretical variogram. In this problem, SVD decomposition has been done 
using the first 3000 eigenvalues and q=3. In this case more than 95% energy of the system has been found. Also 
spectral norm after decomposition was about 0.01. 
 
Conclusions 
In this paper, randomized SVD decomposition has been considered as an efficient method for decomposing 
covariance matrix and generating simulation realizations. This method is based on the randomized sampling of 
covariance matrix for finding a subspace which has much smaller size than the original matrix and captures most of 
the action of that matrix. Using this randomized low rank approximation method, approximated SVD 
decomposition of covariance matrix can be found by considering the first largest k eigenvalues. For testing 
efficiency of this method, different examples for different type of covariance functions have been considered. This 
method works very well for the cases that eigenvalues decay very fast. An example of this case is when the field 
correlation can be defined using Gaussian covariance function. For other cases like the spherical or exponential 
covariance functions that eigenvalues decay slower, using power method is a very good choice for solving this 
problem. The accuracy of results can be estimated by computing energy fraction or spectral norm. A good 
estimation should use about 95% energy of the system and gives a small spectral norm. For assessing efficiency of 
this method, examples compared with Cholesky decomposition results. Comparisons show good efficiency of this 
method. Even for small examples, this method is much faster than Cholesky decomposition method. Using this 
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method, very large covariance matrices can be decomposed which is impossible using Cholesky method. The only 
limitation of this method is related to storing a very large covariance matrix in the memory; the covariance matrix 
must be stored in machine memory. 
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(a) Cholesky decomposition (b) Randomized SVD decomposition 

 
Figure 1: Unconditional realization using exponential covariance 

 

  
(a) Cholesky histogram (b) Randomized SVD histogram 

 
Figure 2: Histogram comparison using exponential covariance 
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Figure 3: Variogram reproduction using exponential covariance. Red dashed lines are variograms of simulated 
realizations using randomized SVD, blue dashed lines are variograms of simulated realizations using Cholesky 
decomposition and gray solid line is theoretical variogram. 
 

 
Figure 4: Changing in the fraction energy of the system with changing range 

 

  
(a) Realization map (b) Eigenvalues decay rate 

 
Figure 5: Realization generated using Gaussian covariance 
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(a) Cholesky decomposition (b) Randomized SVD decomposition 

 
Figure 6: Realization generated using Spherical covariance 

 

  
(a) Data location map (b) Variogram reproduction 

  
(c) Cholesky decomposition (d) Randomized SVD decomposition 

 
Figure 7: Generating conditional simulation realization 
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