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EnKF Applications to Thermal Petroleum Reservoir Characterization 
 

Yevgeniy Zagayevskiy and Clayton V. Deutsch 
 

This paper presents a summary of the application of the ensemble Kalman filter (EnKF) to petroleum 
reservoir characterization of thermally operated oil fields. The characteristics of the ensemble-based 
inverse modeling technique are assessed for northern Alberta bitumen reservoirs operated by steam 
assisted gravity drainage (SAGD) heavy oil extraction method. Proposed data assimilation technique 
effectively integrates static data such as petrophysical core data, and dynamic observations like 
continuous temperature observations or 4D seismic data into a petroleum reservoir model. Synthetic 2D 
and realistic 3D case studies demonstrate that additional information provides better insight into geologic 
properties of a reservoir and improves production forecasting. Theoretical background along with the case 
studies reveals strengths and weaknesses of the EnKF. The method performs well for linear or slightly 
nonlinear systems that follow nearly Gaussian distribution. The model updating procedure is fast, but 
forecasting may be computationally expensive especially for large systems. Localization techniques and 
replacement of the model realizations by their mean at forecast step are suggested to reduce 
computational time. Modifications of the method are required to successfully update categorical variables 
like facies. Even though the EnKF has been proven to be simple in implementation and effective for certain 
tasks, there is still room left for the research. 
 
Introduction 
The objective of a petroleum reservoir development project is profit maximization over the shortest 
possible period of time. Clear understanding of a petroleum reservoir geology helps to select appropriate 
technology for oil extraction, effectively place production/injection wells and surface facilities. All these 
and other activities lead to efficient field development. Learning dependence of production response on 
mutual relation between subsurface structure and properties of the extraction techniques will even 
further improve economics of the project. Therefore, there is a need to model petroleum system in 
conjunction with its static and dynamic components that can be presented in the form of petrophysical 
properties and time variations of physical conditions of a reservoir. 

In order to plausibly describe behavior of the reservoir and predict future performance, various 
computational tools are available for petroleum reservoir characterization. Most of them use a concept of 
data assimilation, in which available data is integrated into the model by minimizing the difference 
between current model estimate and data at observation locations, while preserving overall physical and 
spatial structure of the model. Both static and dynamic data are integrated into the model to improve its 
quality (Oliver et al, 2008). 

Reservoir characterization implies an inverse problem, where limited number of local data points 
is used to infer entire spatial configuration of the model (Oliver et al., 2008). A solution of the inverse 
problem is not unique, which means there is more than one solution that satisfies the problem settings by 
honoring data, and it is not obvious which solution is the closest to the reality (Tarantola, 2005). 

All inverse modeling techniques can be divided into two broad groups based on strategy of 
minimizing mismatch between current model state and data: local techniques that search for solution 
around initial first-guess model estimate using Hessian and Jacobian matrices consisting of partial 
derivatives, and global techniques that search for solution globally trying to find the best set of 
parameters from available large pool of degrees of freedom. Local optimization techniques like Gauss-
Newton method (Reynolds et al., 1996) and sequential self-calibration (SSC) technique (Gomez-Hernanez 
et al., 1997) require analytical description of the system, which is not an easy task. Global optimization 
techniques like genetic algorithm (Sen et al., 1995) and simulated annealing technique (Deutsch, 1992) 
might be more computationally expensive and might lead to wrong solution, if prior information is chosen 
poorly. However, they do not require prior construction of sensitivity matrices from analytical equations. 

The ensemble Kalman filter or shortly EnKF is an inverse modeling technique that falls into global 
optimization pool, but it is based on set (ensemble) of equiprobable realizations of model estimates 
(Evensen, 2009). The method is based on Bayesian framework and Monte Carlo simulation (MCS). The 
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EnKF is easy to implement, but since it is based on ensemble of realizations, the technique is 
computationally expensive for complex large nonlinear systems. Its main advantage that attracted 
popularity to the technique is the ability to sequentially assimilate both static and dynamic data along 
with some prior information. Instead of deriving and solving analytical equations of petroleum reservoir 
behavior, existing numerical model can be adapted to predict reservoir performance. Its main drawback 
lies in the Gaussian nature of the estimate, i.e. distribution of the estimate tends to be normal. Moreover, 
it is hard to properly characterize highly nonlinear systems. Some modifications of the technique or 
transformation of the model distribution are necessary in order to implement the EnKF properly for 
categorical variables (Lorentzen et al, 2011). 
 This paper is organized as follows. First, family of Kalman filters is reviewed with description of 
strengths and weaknesses of each member. Second, theoretical background of the EnKF is presented. 
Third, characteristics and implementation details of the EnKF for petroleum reservoir characterization are 
shown. Fourth, methodology of EnKF application to thermally operated fields with available static and 
dynamic data is presented. Benefit of EnKF treatment as black box is explained. Fifth, synthetic 2D and 
realistic 3D case studies for SAGD fields are presented to show ability of the EnKF to assimilate static 
porosity and permeability data along with continuously measured temperature observations and time-
lapse seismic attributes. Finally, conclusions are made and future work is defined. 
 
Kalman Filter Family 
History of EnKF origin is described in this section. Different modifications of Kalman filter (KF) inverse 
modeling technique are available in the literature. Originally, Kalman filter was devised by a Hungary-
American mathematician and engineer Rudolf Kalman to remove noise from dynamic electrical signal 
(Kalman, 1960). In this context, the signal can be represented as a physical entity propagating in time and 
measured with error, which has to be removed in order to find the true value. Prior information is 
additionally used to further constrain the estimate of the truth by minimizing both measurement and 
prior estimate errors. Estimation is based on covariance structure of the system, and is a solution to 
Bayesian inversion problem. 

The drawback of KF is that it can be applied only to linear systems. In reality, a few systems can 
be approximated in linear fashion. For this reason, the Kalman filter was modified to the extended Kalman 
filter (EKF), in which linear nature of the model is replaced with nonlinear form (Einicke and White, 1999). 
The problem with EKF is difficulty of deriving covariance matrix necessary for the estimation. 

The ensemble Kalman filter (EnKF) is a stochastic extension of the EKF (Evensen, 2009). Model 
covariance matrix is replaced by sample covariance matrix, which is computed from the ensemble 
members also known as realizations. Each realization represents equiprobable estimate of the truth. The 
EnKF requires storing only a portion of the covariance matrix that describes relationship between model 
and data. This reduction of covariance matrix saves memory requirements and decreases computational 
time. However, a large ensemble is required to correctly approximate covariance structure, and 
propagation of the large nonlinear systems in time gets computationally expensive. 

The unscented Kalman filter (UKF) is devised to reduce computational time of the forecast by 
propagating just several realizations in time and reconstructing rest of the realizations based on general 
knowledge of the system distribution form (Julier and Uhlmann, 1997). The reproduction of the 
distribution is not straightforward and complicated. Covariance structure is deviated from expected as 
ensemble evolves. 

Minor modification of the EnKF, in which all available data from different sources and time are 
integrated at once, is called ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000). It is a 
good alternative to the EnKF, if sequential propagation of the model is not required, for instance, when 
dynamic data is not assimilated frequently enough. Some other techniques similar to the EnKF are 
developed, but their application is limited in the petroleum literature. Randomized maximum likelihood 
(RML) and particle filter (PF) are few examples (Carrera and Neuman, 1986; Doucet et al., 2000). In the 
RML a large number of realizations are generated to represent all possible states of the modeled system. 
At data integration step, the realizations that honor the data the worst are discarded, other realizations 
are retained until deemed irrelevant, and final realization set is deemed to be a solution. Such approach is 
computationally expensive and does not guarantee that obtained solution is an optimal one. 
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Theoretical Background 
In mathematical context, a petroleum reservoir is a complex system that can be described through a 
dynamic model zt. This model consists of two types of spatial functions that describe static and dynamic 
reservoir components: time insensitive model parameters m and time t variant state variables s t. Both 
model parameters and state variables are stored in vector forms as shown in Eqs. (1) – (2.a). It is assumed 
that a state variable at current time step is a function of state variable value at previous time step, model 
parameters, initial and boundary conditions. Data vector dt is third supplementary component of the 
model. 
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where zt, m, st, and dt are the column vectors that represent entire model, model parameters, state 
variables, and data/observations respectively; t is the time index, and it is obvious that model parameters 
do not vary in time; s0 and sb

t are the initial and boundary conditions of the model state variables st; εt is 
the model error associated with the model propagation from time step t – 1 to next time step t; Ab is the 
boundary domain; F and G are the model and observation operators that relate state variables and data 
to model parameter respectively. The operators may represent linear or nonlinear relationships 
depending on the system characteristics.  

Generally, the petroleum reservoir system is numerically discretized in the space. Discrete values 
of continuous or categorical variables are assigned to the centers of the model grid blocks. Therefore, 
column vectors in Eqs. (1) – (3) compose of discrete values organized in some defined order. 

The KF/EKF consists of two recursive steps: linear/nonlinear forecast step from one time step to 
another, and linear analysis step, which is based on a solution to Bayesian optimization problem. Analysis 
step is performed as many times as number of observations are assimilated from different time steps. 
Forecast step propagates state variables in time conditional to updated model parameters. 

The forecast step can be derived as follows. If zt-1 is viewed as some prior model estimate za
t 

with zero model error, then model estimate zt at next time step conditional to updated model parameters 
ma becomes zf

t. The Eq. (2.a) also transforms to: 
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The Eq. (4) can be also called forward model. In most cases model error ε t is ignored in Eq. (2.a), 

if the forward operator F is well defined. This equation is necessarily to establish plausible relationship 
between model parameters and state variables after data assimilation is performed. 

The Bayesian framework for derivation of the analysis step is explained next. Bayesian rule can 
be expressed as shown in Eq. (5), where posterior probability distribution p(z|d) of the system is 
proportional to some prior probability p(z) and data likelihood p(d|z) (Tarantola, 2005; Evensen, 2009). 
Time step is omitted, since updating step is performed without propagation in time. Model has distinct 
spatial structure before and after updating, which is updated based on spatial configuration and value of 
the integrated data. Essential probability density functions are presented in Eqs. (6) – (8) mathematically 
and assumed to follow normal (Gaussian) distribution. 



Paper 201, CCG Annual Report 14, 2012 (© 2012) 

 201-4 

 
)()|()|( zzddz ppp ⋅∝  (5) 

 

( ) ( ) ( )



 −⋅⋅−−∝

−

dz
a
zz

T
dzp |

1
|2

1exp)|( μzCμzdz  (6) 

 

( ) ( ) ( )



 −⋅⋅−−∝ −

zddd
T

zdp |
1

|2
1exp)|( μzCμzzd  (7) 

 

( ) ( ) ( )



 −⋅⋅−−∝

−

z
f
zz

T
zp μzCμzz 1

2
1exp)(  (8) 

 
where μz, μd|z, and μz|d are the mean vectors of a prior, data, and posterior normal distributions of model 
z; and Cf

zz, Cdd, and Ca
zz are the covariance matrices of a prior, data, and posterior normal distributions of 

model z. Data covariance matrix Cdd defines covariance structure of measurement errors. 
When Eqs. (6) – (8) are used in Eq. (5) and maximum of posterior distribution is sought, equation 

for linear analysis step based on model covariance structure is derived. The output optimized posterior 
distribution defines updated model and covariance structure that honor newly assimilated data. The 
equations are shown below (Evensen, 2009): 
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where K is the Kalman gain or weighting matrix; I is the identity matrix; and H is the observation matrix 
that relates model estimates to data. 
 Same solution can be derived by looking at the problem at different angle. Objective function can 
be defined as a sum of weighted product of difference between estimate and truth for prior model and 
data. Here, prior model zf is viewed as a sum of model truth ztr and model errors εz. Data d is represented 
by sum of model truth ztr and measurement error εd. Mathematically it can be expressed as in Eqs. (12) – 
(14). Minimization of this objective function implies bringing estimate z closer to the truth ztr. Such 
minimization produces same Eqs. (9) – (11) (Evensen, 2009). 
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where εz ~ N(0, diag(Cf

zz)) and εd ~ N(0, diag(Cf
dd)). It is assumed that model deviations εz and 

measurement errors εd are uncorrelated. 
Similarities between KF’s analysis equation and simple kriging are shown in (Zagayevskiy et al, 

2010). 
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 The EnKF differs from the KF/EKF in a sense that the model z is represented by the matrix Z, not 
vector, where all model realizations are stored. Covariance matrix Cf

zz  is carried forward through the 
ensemble members and, thus, covariance matrix Cf

zz is approximated by sample covariance matrix f
zzĈ : 
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where fZ  is the model mean over ensemble members; e is the Ne x 1 row vector consisting of 1s; and Ne 
is the ensemble size, number of ensemble members or realizations.  

Data vector d is also extended into the matrix D by adding some perturbation εd ~ N(0, Cdd) to 
the existing data values. Perturbations are important, since true measurement error covariance matrix is 
not known, but has to be reproduced artificially to preserve validity of the EnKF equations. 
 Therefore, current model state and parameters are updated linearly at analysis step and are 
treated as input to the next forecast step. This process is continued until all observations are assimilated 
or objective function is optimized. 
 
EnKF Characteristics and Implementation Details 
Characteristics of the EnKF application have been studied and implementation details have been explored 
by the authors (Zagayevskiy et al., 2010a; Zagayevskiy et al., 2010b). 

Beauty of the EnKF is that there is no need to fully understand the prediction mechanism at the 
forecast step. However, it is important that the tool used at the forecast step properly describes dynamic 
features of the studied system. Benefit of using full physics embedded into commercial flow simulator like 
CMG’s STARS or Schlumberger’s Eclipse versus proxy model is the same, in case if two simulators perform 
equally well. Therefore, black box in form of commercial software is not a bad idea and might be 
beneficial in terms of model accuracy, but computationally expensive in comparison with a proxy model. 

The limitations and challenges are as follows. The EnKF is based on Gaussian framework, where 
updating step is linear and modeled variables are continuous. Thus, the technique is good for linear 
Gaussian systems. Simplification of the system to linear and transformation of variable distribution may 
be required in order efficiently implement EnKF. Updating of categorical variables can be hardly 
performed without either modification of the EnKF’s analysis step or transformation of categorical 
variables to continuous form. Dovera and Rossa have introduced concept of Gaussian mixture models 
(GMM). Continuous properties of a model are grouped based on the affiliation to the model categories 
(Dovera and Rossa, 2007). Multimodal prior distribution of continuous variables is assumed, where each 
modal distribution behaves in a Gaussian manner and corresponds to a specific category. This approach 
has several drawbacks. There is a strong assumption of linear relationship between the model variables 
and data. Also the GMM technique is not capable of changing the shape and modal number of the prior 
distribution at the analysis step. Therefore, only continuous variables are updated, but categorical ones 
are left unchanged and inferred from updated continuous variables. The EnKF algorithm is modified to an 
extent when it is not simple anymore to implement. Another study on categorical variable updating with 
the EnKF was done by Lorentzen et al., in which categorical variables are represented by distance 
functions (Lorentzen et al., 2011). In this approach, prior information has stronger influence on the 
estimate than data. Therefore, if initial ensemble is chosen poorly, newly assimilated data hardly bring 
new information into the model. Application of the EnKF to categorical variables still remains an active 
research direction (Liu and Oliver, 2005). 

Two main known implementation issues exist. First concern is related to ensemble collapse, 
when number of integrated data is larger than ensemble size, e.g. when seismic data is assimilated into a 
model. Second, computational time may be very high at the forecast step, if the modeled system is 
complex, and it is expensive to forecast even single realization. Model localization techniques are useful 
to solve these issues. Shortcut, in which entire ensemble propagation at the forecast step is replaced with 
ensemble mean/P50, saves computational time by sacrificing quality of the estimate.  
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If the ensemble size is not big enough, spurious covariance matrix occurs, which leads to 
ensemble collapse. Two localization techniques are studied: covariance matrix localization and updating 
matrix localization. The covariance matrix localization produces better estimates; but it is ambiguous to 
select appropriate smoothing function. Localization of updating matrix is straightforward; but leads to the 
artifacts in the estimates. Mathematically, two localization techniques can be expressed as follows: 
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where Lc and Lu are the localization matrices for covariance and updating matrices localization 
procedures, respectively; Lc has the same size as covariance matrix f

zzĈ  and represents a smoothing 
function, values of which varies between 0 and 1: function takes value of 1 at data location and gradually 
decreases to 0 as estimate location is moving away from the sampled location; ◦ is the element-wise or 
Hadamart product of matrix elements; Lu also has the same size as f

zzĈ , but it consists of either 0 or 1 
values: 1 stands for the locations at which updating should take place, and 0 is used for the locations, 
values at which do not change with data assimilation. 
 The EnKF is very expensive at forecast step. A procedure based on mean of realizations is 
developed to decrease computational time at the forecast step. Ensemble mean of state variables is 
computed and used at the forecast step instead of the entire ensemble realizations.  State variable 
realizations are reconstructed after forecast step by adding spatially correlated random fields to the 
forecasted mean. These random fields should be conditioned to model parameters and follow normal 
distribution with zero mean and spatial function of the state variables. Ranking of realizations and 
working with only several representative quantiles at the forecast step is another possibility to decrease 
computational time and make the technique more appealing in practice. Entire ensemble is reconstructed 
back after the forecast step is performed based on ranking, known shape of the distribution, and selected 
forecasted realizations. 

Some other minor comment is to be careful in setting up EnKF algorithm. Even though EnKF 
equations are simple, it might be hard to set up a workflow, since various software should be linked 
together in order to relate all variable types. Convergence of the realizations to data values occurs as long 
as everything is set up correctly, there is no error in forward model, and measurement errors represented 
by a perturbation matrix is relatively small. 
 Model error εt is important; however, it is usually assumed that the forward model is well 
defined and the error is ignored. See more details in Evensen (Evensen, 2009). 
 
EnKF Application to SAGD Petroleum Reservoir Characterization 
Schematically data integration with the EnKF for SAGD petroleum reservoir characterization can be 
presented by a chart in Figure 1. The EnKF reservoir characterization technique consists of two main 
recursive steps: forecast step and analysis step. The technique can be viewed simply as state variable 
prediction at the forecast step and estimation of model parameters through data integration at the 
analysis step. It is important to estimate vertical permeability in SAGD fields, since it determines 
communication between an injector and producer, and vertical flow from reservoir to production wells. 

Key model parameters are porosity, horizontal and vertical permeability. Main state variables are 
reservoir temperature change over time and difference between acoustic impedance from base line 
survey and subsequent monitoring surveys. The objective is to estimate model parameters by integrating 
core data, continuous temperature and exhaustive time-lapse seismic observations into petroleum 
reservoir model with the EnKF. 

The algorithm starts with generation of initial porosity ensemble that consists of Ne realizations 
and contains some prior information about porosity distribution like spatial structure in form of 
semivariogram model or conceptual model of facies distribution. Simulation of porosity conditional to 
hard data is not required to generate initial ensemble, but such ensemble would be a good starting point. 
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Then, the initial porosity model is used at the forecast step, and realizations of all remaining key variables 
are simulated. Model operator at the forecast step comprises three sub models: porosity-permeability 
relationship, thermal flow simulation, and petroelastic model. Logarithmic values of horizontal 
permeability are generated according to porosity-permeability transform in Eq. (19) and vertical 
permeability is derived from Eq. (20). An example of porosity-logarithmic horizontal permeability function 
is shown in Figure 6. Realizations of reservoir pressure, temperature, and water, oil, and gas saturations at 
time step t are computed by thermal flow simulator, which is in this work presented by CMG’s STARS. This 
thermal flow simulator is treated as a black box, parameters of which are assumed to be constant and 
known to a modeler. Since flow simulation is performed for each realization, the forecast step is 
computationally expensive for large systems. Realizations of acoustic impedance values for initial time 
step t0 and current time step t are calculated through pressure- and temperature-dependent Gassmann’s 
fluid substitution model using porosity and thermal flow simulator’s output as input into this petroelastic 
model (Kumar, 2006; Zagayevskiy and Deutsch, 2011b). Difference in acoustic impedance is derived as 
subtraction of seismic attributes sampled at base case survey from monitoring survey seismic attributes. It 
is found that acoustic impedance is sensitive to porosity and temperature at comparable degree. 
 

( )[ ]chh aaKK φφφ /3exp1)(log)(log 21min,1010 ⋅−−⋅+⋅+=  (19) 
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where Kh and Kv  are the horizontal and vertical permeability respectively, mD; φ  is the porosity; Kh,min is 

the intercept of minimal hypothetical horizontal permeability value, when effective porosity is zero; cφ  is 
the critical porosity or porosity value when permeability stabilizes on log permeability-porosity curve; a1 
and a2 are the experimental regression coefficients; and RKv/Kh is the experimental vertical permeability to 
horizontal permeability ratio. 
 At this point the entire model ensemble is defined and analysis step is performed next, if model 
parameter data or observations of continuous variables are available for current time step. The Eqs. (9) – 
(11) and (15) – (16) are used to linearly update model parameters and states through data assimilation 
and covariance function of the model. Then, the model is propagated in time to a next time step with 
updated model parameters. Thus, coupled forecast step and analysis step are run repeatedly until all data 
are assimilated or objective function is optimized.  

Since studied SAGD reservoir system has a nonlinear nature, forecast step beside prediction 
ensures that forecasted state variables physically match updated model parameters. Some authors call 
this correction as a confirmation step. The issue is that after analysis step is performed, updated states 
are no longer correspond to updated model parameters and, thus, next run of the forecast step adjusts 
model states to updated model parameters.  

Instead of running a flow simulation for each of Ne realizations at the forecast step, shortcut 
based on model parameter mean and unconditional simulation is proposed, which significantly decreases 
computational time with reduced quality of model estimate (Zagayevskiy et al, 2011a). In this shortcut, 
mean maps of porosity and permeability are computed and used in the flow simulation. It is assumed that 
resulting distribution of dynamic variables also represents mean of model states. Missing ensemble 
realizations of state variables are recreated through variability introduction to mean estimate of state 
variables by adding zero-mean unconditional realizations with spatial structure of model states correlated 
to primary model parameters. By doing so, physical appearance of the dynamic variables and their linear 
correlation with model parameters are preserved, which is important to compute Kalman gain weighting 
matrix. This approach is an implementation shortcut with less prediction accuracy and, thus, should be 
used when a full set of thermal flow simulation runs is computationally unaffordable. 

Case studies shown in the next section highlight implementation details of the EnKF application 
to SAGD petroleum reservoir characterization, show contribution value of various data types, emphasize 
importance of initial ensemble, and address practical issues with the EnKF. The results show 
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improvements in reservoir performance prediction with additionally assimilated data. The FORTRAN 
program enkf.exe is available for reproduction of the results. 
 
Case Studies 
Two case studies are demonstrated to highlight properties and implementation details of the EnKF inverse 
modeling technique for estimation of static reservoir properties such as porosity and permeability and 
prediction of dynamic reservoir properties like cumulative oil production rate of SAGD operated fields. 
Different combinations of datasets are integrated into the model to assess importance and information 
value of each data type. Hard porosity and horizontal permeability data and soft temperature and seismic 
attributes are assimilated in a sequential fashion to improve prediction accuracy of the cumulative oil 
production rate. 

Higher attention is paid to estimation of porosity and permeability properties of the reservoir, 
since their spatial configuration along with geological faults determine flow paths, baffles, and barriers for 
fluid flow from reservoir to production wells. Better understanding of model parameters, which are 
enhanced by the EnKF-based data assimilation, leads to more accurate prediction of dynamic reservoir 
performance. 

The 2D conceptual model of channelized system is studied in first case study to examine ability of 
the EnKF to differentiate between flow paths and barriers. The 3D case study is shaped after conceptual 
model of north Alberta oil sands depositions in the estuarine environment to assess practical application 
of the EnKF.  

For both case studies true distribution of model parameters and state variables is known in order 
to validate estimates and assess information value of different data types. Root mean square error 
(RMSE), mean standard deviation (MSD), and linear correlation coefficient (CC) are used to assess 
estimation accuracy of porosity field. Corresponding equations for porosity validation are shown in (21) – 
(23). The RMSE and CC indicate how close ensemble realizations are to the truth.  The MSD shows how 
similar ensemble realizations are. Therefore, lower values of RMSE and MSD show better match of 
estimate to the truth and convergence respectively. Value of CC closer to 1.0 indicates better match 
between ensemble mean and the truth. Prediction accuracy of the estimated model is assessed through 
comparison of cumulative oil production of base case to the predictions from the EnKF. Since permeability 
field behaves identically to porosity field due to their well-defined transform in Eqs. (19) and (20), 
validation of permeability is deemed to be redundant. 
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where Nb is the total number of grid blocks in the model; Ne is the ensemble size or number of 
realizations in the ensemble; i and j are the indices over block and realization number respectively; mi,j is 
the model parameter estimate at the ith location of jth realization, which is porosity in our case; mtr

i is the 
true value of model parameter at ith location; and m , im , and trm  are the average (mean) of estimates 
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over model grid and ensemble realizations, ensemble realizations, and average of truth over model grid, 
respectively. 

Results are shown below and indicate that EnKF performed well in both cases with more 
accurate estimation outcome in 2D case study. Importance of careful selection of initial porosity 
ensemble is obviously seen in 3D case study. 

 
2D Case Study 
Base case constitutes background high quality reservoir rock and imbedded low quality mud barrier of 
channel-like shape as shown in Figure 2. The model can be viewed as a system of two lithological facies: 
good quality sand and poor quality shale, which is typical lithology in the McMurray formation, northern 
Alberta. Generated binary facies model is populated with single value porosity and permeability for each 
facies (Figure 2) according to the regression model relationship in Eq. (19) and (20) (Figure 6). This 
porosity-horizontal permeability transform is a fair practical approximation for facies in McMurray 
formation (Deutsch, 2010).  

The model grid consists of 51 x 30 blocks, sides of which are 1.0 m each. A SAGD pair is placed 
symmetrically in the bottom middle of the model with separation distance of 5.0 m. Two vertical 
observation wells are drilled to sample porosity and permeability hard data. Thermocouples are located at 
the observation wells, producer, and injector to continuously measure reservoir temperature. Seismic 
survey is conducted over the area. Acoustic impedance is inverted from the seismic response and covers 
entire area of model grid with 3 x 3 m resolution. The continuous observations of temperature and 
acoustic impedance are sampled three times: just before the production begins, and 240 and 480 days 
after production start. Timeline of the case study is shown in Figure 5. Thus, the model is updated three 
times: with porosity and/or permeability data at t0 = 0, with temperature and difference of acoustic 
impedance at t1 = 240 days, and with temperature and difference of acoustic impedance at t2 = 480 days 
with the EnKF. Base cases of porosity and difference of acoustic impedance for times steps t1 and t2 are 
presented in Figure 3 and Figure 4 respectively. It is obvious that continuous data reflect geological 
structure of the system. Updated model parameters are used to forecast cumulative oil production rate 
for period of 6000 days (~16.7 years). Different cases are examined to compare different modeling 
techniques, assess importance of different data types, and track improvements of the model over 
assimilation time. Full list of the cases is stored in Table 1. Fifty realizations is the default ensemble size 
with localized covariance matrix. 
 

Table 1: 2D case study: different cases. The defaults are 50 realizations with localized covariance matrix 
 
# Method Data and Comments 

1 Kriging Porosity 
2 SGS Porosity 
3 EnKF No data, initial ensemble 
4 EnKF Porosity 
5 EnKF  Porosity, 1000 realizations 
6 EnKF  Porosity, no localization 
7 EnKF  Porosity, localization of updating matrix 
8 EnKF  Porosity and permeability 
9 EnKF  Porosity data and temperature observations from time step 1 
10 EnKF  Porosity data and temperature observations from time step 1 with shortcut 
11 EnKF  Porosity data and temperature observations from time steps 1 & 2 
12 EnKF  Porosity data and difference in acoustic impedance observations from time step 1 
13 EnKF  Porosity data and difference in acoustic impedance observations from time step 1 & 2 
14 EnKF  Porosity data, temperature, difference in acoustic impedance observations from time 1 
15 EnKF  Porosity data, temperature, difference in acoustic impedance observations from time 1 & 2 
 Figure 8 shows estimates derived from various techniques and conditional to different data sets. 
Numerically results are compared through RMSE, MSD, and CC, bar charts of which are shown in Figure 
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10. Change of one realization of porosity from initial to estimate constrained to porosity data, change of 
variance of porosity estimate, and dependence of permeability on porosity are presented in Figure 7. All 
model estimates are used to forecast the cumulative oil production, which are also compared to the base 
case (Figure 9). 
 It is observed that additional integration of the data improves porosity estimate and prediction 
accuracy of cumulative oil production rate. Integration of soft dynamic data definitely enhances model 
quality. EnKF performs almost as well as kriging and SGS for hard data integration, but EnKF excels 
conventional mapping tools, when additional dynamic data is integrated. Seismic data has the largest 
contribution to the estimation quality, because of its larger spatial coverage. Ensemble collapse is 
observed, when ensemble size is small in comparison with the number of assimilated data and no 
localization technique is applied. If ensemble size increases, model estimate improves as well. Localization 
techniques improve model without increase of ensemble size. Covariance localization of the form in Eq. 
(24) improves model better than localization of updating matrix. Localization of updating matrix leads 
artifacts in the porosity estimation due to boundary effect of updating window. Proposed shortcut at the 
forecast step is applied successfully to integrate temperature data that leads to reduction in 
computational time and slightly decrease in the estimation quality. When redundant data is used in the 
estimation like permeability with porosity or temperature with acoustic impedance, prediction accuracy 
improves, but porosity estimate gets worse. Even though the ensemble convergence to single realization 
with increasing number of assimilated data is a good sign, ensemble collapse should be avoided. 
 

( )2225exp zyxi
c
i llllL ++⋅−=  (24) 

 
where Lc

i is the element of covariance localization matrix Lc; l i is the distance between data location and 
estimate in the space; and lx, ly, and lz are the model dimensions in X, Y, and Z directions. 
 
3D Case Study 
The 3D case study is set up similar to the 2D case study. But more complex and geologically realistic base 
case is selected that describes tidally influenced fluvial depositional environment typical for the 
McMurray formation in northern Alberta (Hassanpour and Deutsch, 2010). The model grid is represented 
by 16 x 25 x 15 blocks of 50.0 m, 8.0 m, and 2.0 m size respectively, layout of which is shown in Figure 11 
and Figure 13. Grid-free object-based facies model is generated and rasterized with different resolutions: 
high resolution model is used as an ultimate truth, and low resolution model represents secondary base 
case, at scale of which EnKF estimation and prediction are performed to reduce computational time. The 
resolution of rasterization of the facies model has an effect on reservoir performance prediction, but 
slight effect is observed on facies proportions and other geological properties of the system (Figure 12 
and Figure 20). The facies model is populated with porosity and permeability values that are correlated to 
each other as shown in Figure 14. Histogram of base case porosity is shown in the same figure. 

Two SAGD well pairs are drilled for the bitumen extraction, and three vertical observation wells 
are available for hard data sampling and continuous temperature response measurements. Temperature 
change is observed in well 1 and slightly in well 2, but not in well 3, which means that flow properties 
around wells 2 and 3 are not as good as around well 1. The EnKF-based algorithm is used to estimate 
porosity and permeability and forecast cumulative oil production for 6000 days. Two different initial 
porosity ensembles are used to emphasize importance of proper generation of the initial ensemble. First 
initial porosity ensemble follows Gaussian distribution with mean and variance of porosity data. Second 
initial porosity ensemble has a binary facies pattern identical to the base case, but different values of 
porosity and permeability are used in model population. Various combinations of data are looked at to 
estimate porosity field in order to detect the effect of data type on predictions. The examined cases are 
tabulated in Table 2.  

Estimates derived from first initial ensemble for various cases are shown in Figure 15, and 
estimates obtained from second initial ensemble are presented in Figure 16. Histograms of the estimates 
can be found in next two set of plots: Figure 17 and Figure 19. Computed values of validation measures 
are visually presented in Figure 18. Figure 20 shows a forecast made by the EnKF for various data 
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combinations. When cumulative oil production rates and porosity estimates are compared for cases 
generated with different initial porosity ensembles, it is observed that second initial ensemble closer to 
the truth leads to better forecast. In both cases updated porosity field tends to be normal. Original binary-
like porosity model becomes normal due to Gaussian nature of the EnKF background. This observation 
indicates a drawback of the EnKF for modeling multimodal systems. Additional temperature data does not 
improve model, since temperature from first time step is deemed to be informative enough. Proposed 
shortcut works worse in 3D case study, and leads to extreme values in porosity estimate, but predicts 
better dynamic states. Improvement oil production forecast is small, if initial ensemble is chosen close to 
the reality, and improvement is significant, if initial ensemble is chosen far from the reality (Figure 20). 
 

Table 2: 3D case study: different cases. The defaults are 50 realizations with localized covariance matrix 
 

# EnKF 
Method Data 

1 Conventional No 
2 Conventional Porosity 
3 Conventional Porosity, temperature 1 
4 Conventional Porosity, temperature 1 and 2 
5 Shortcut Porosity, temperature 1 
6 Shortcut Porosity, temperature 1 and 2 

 
  
 
Conclusions and Future Work 
It has been shown that the EnKF is very powerful inverse modeling technique, especially when 
modifications are applied to the technique like covariance localization or shortcut at the forecast step. 
Two case studies for SAGD applications have been demonstrated, in which EnKF was able to closely 
predict future performance of the reservoir and describe subsurface geological properties of the 
McMurray formation in northern Alberta. Additionally assimilated data improve quality of static 
properties of the model and prediction accuracy of cumulative oil production rate. 

Commercial benefit of the EnKF applications to the SAGD fields should be studied further. Real 
case studies implementations are limited due to computational expense and inability to properly 
characterize categorical variables. Parallel programming, modifications, and simplifications should be 
considered for the future applications to reduce computational time. Developments towards modeling of 
non-Gaussian systems should be enhanced as well. 
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Figure 1: Data integration flow chart for SAGD petroleum reservoir characterization with the EnKF 
 

               
 
Figure 2: 2D porosity and horizontal permeability base case and well layout: vertical wells with 
observation locations, horizontal SAGD injector and producer 
 

 
 
Figure 3: 2D temperature base case for 240 & 480 days after production begins with observation locations 
 

 
 
Figure 4: 2D difference of acoustic impedance base case for 240 & 480 days with observation location grid 
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Figure 5: Timeline of data integration in 2D case study 
 

 
 
Figure 6: Porosity-horizontal permeability regression model: dots represent binary facies in 2D case study 
 

             
 

                  
 

           
 
Figure 7: Evolution of porosity estimate, change of variance map, and evidence of strong porosity-
permeability relationship. Low value artifacts on variance maps are introduced by limiting updated 
porosity estimate between 0.0 and 0.4. 
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Figure 8: Mean value maps of porosity estimates from 50 realizations with localization of covariance 
matrix: a) kriging with porosity data, b) SGS with porosity data, c) initial ensemble, d) EnKF with porosity 
data, e) EnKF with porosity data, 1000 realizations and no localization, f) EnKF with porosity data and 
localization of updating matrix, g) EnKF with porosity data, h) EnKF with porosity and permeability data, i) 
EnKF with porosity data and temperature observations from day 240, j) EnKF with porosity data and 
temperature observations from day 240 with shortcut, k) EnKF with porosity data and temperature 
observations from day 240 and 480, l) EnKF with porosity data and difference in acoustic impedance 
observations from day 240, m) EnKF with porosity data and difference in acoustic impedance observations 
from day 240 and 480, n) EnKF with porosity data, temperature and difference in acoustic impedance 
observations from day 240, o) EnKF with porosity data, temperature and difference in acoustic impedance 
observations from day 240 and 480. 
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Figure 9: Prediction of cumulative oil production rate, 2D case study. See Figure 8 for description of cases. 



Paper 201, CCG Annual Report 14, 2012 (© 2012) 

 201-17 

   
 
Figure 10: Results of validation calculations for 2D case study. The default parameters for the EnKF are 50 
realizations with localized covariance matrix: 1) kriging with porosity data; 2) SGS with porosity data; 3) 
initial ensemble; 4) EnKF with porosity data; 5) EnKF with porosity data and 1000 realizations; 6) EnKF 
with porosity data and no localization; 7) EnKF with porosity data and localized updating matrix; 8) EnKF 
with porosity and permeability data; 9) EnKF with porosity data and temperature observations from time 
step 1; 10) EnKF with porosity data and temperature observations from time step 1 using shortcut; 11) 
EnKF with porosity data and temperature observations from time steps 1 and 2; 12) EnKF with porosity 
data and difference in acoustic impedance observations from time step 1; 13) EnKF with porosity data and 
difference in acoustic impedance observations from time steps 1 and 2; 14) EnKF with porosity data, 
temperature and difference in acoustic impedance observations from time step 1; 15) EnKF with porosity 
data, temperature and difference in acoustic impedance observations from time steps 1 and 2 
 
 High Resolution Porosity Model Low Resolution Porosity Model 

                                                           
 

   
Figure 11: Facies base case for 3D case study: high resolution model for true production, low resolution 
model for the flow simulations. 3D and plan views are at 3 m elevation. Z axis is exaggerated by 5 times 
 

                                  
Figure 12: Histograms of facies proportions for high and low resolution models: cross-stratified sand (CSS), 
shale drapes (SD), point-bar sand (PBS), breccia (B), and channel fill mud (CFM) 
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Figure 13: Well configurations and SAGD layout for 3D case study 
 

                  
Figure 14: Histogram of base case porosity and base case porosity-horizontal permeability scatter plot 
 

      

        

     
Figure 15: Plan view of means of EnKF porosity estimates derived from 50 realizations: a) initial Gaussian 
ensemble, b) porosity data, c) porosity data and temperature observations at 720 days, d) porosity data 
and temperature observations at 720 & 1440 days, e) porosity data and temperature observations at 720 
days using shortcut, and f) porosity data and temperature observations at 720 & 1440 days using shortcut 

      

         

      
Figure 16: Plan views of means of EnKF porosity estimates derived from 50 realizations: a) initial binary 
ensemble, b) porosity data, c) porosity data and temperature observations at 720 days, d) porosity data 
and temperature observations at 720 & 1440 days, e) porosity data and temperature observations at 720 
days using shortcut, and f) porosity data and temperature observations at 720 & 1440 days using shortcut 
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Figure 17: Histograms of EnKF porosity mean estimates derived from different cases using initial Gaussian 
ensemble, see Figure 15 for the details 
 

 
 
Figure 18: Results of validation calculations for 3D case study with initial Gaussian and binary ensembles. 
The default parameters for the EnKF are 50 realizations with localized covariance matrix: 1) initial 
ensemble; 2) EnKF with porosity data; 3) EnKF with porosity data and temperature observations from 
time step 1; 4) EnKF with porosity data and temperature observations from time steps 1 and 2; 5) EnKF 
with porosity data and temperature observations from time step 1 using shortcut; 6) EnKF with porosity 
data and temperature observations from time steps 1 and 2 
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Figure 19: Histograms of EnKF porosity means estimates derived from different cases using initial binary 
ensemble, see Figure 15 for the details 
 

   
 
Figure 20: Cumulative oil production rate from the entire SAGD model: base case for low and high 
resolution 3D models, and prediction means of different cases with different initial ensembles 


