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Well Trajectory Optimization for SAGD 
 

John G. Manchuk and Clayton V. Deutsch 
 

Forecasting the potential recoverable bitumen from a SAGD drainage area is dependent on several factors 
including reservoir geometry, heterogeneity, operating conditions, and well pair position.  Implementing 
good well trajectory design increases the amount of recoverable bitumen and the economic value of the 
project.  Understanding the sensitivity of the design relative to different reservoir and engineering 
parameters is useful decision support information.  Moreover, the optimal positioning of well pairs 
interacts with the layout of the drainage areas and associated surface pad facilities.  This paper develops a 
well trajectory optimization approach that designs trajectories so that the potential recovery from a well 
pair is maximized.  The approach is designed primarily to support the optimization of drainage area 
configurations developed in the associated paper; therefore, trajectories are optimized in two dimensional 
cross sections of the reservoir that run along the well length and along depth or elevation through the 
reservoir.  Optimization is based on surfaces that reflect the quality of the reservoir and include a base 
surface and net and gross bitumen thickness surfaces.  The algorithm can optimize wells that are strictly 
horizontal, or that are deviated within specified constraints that include limitations on slope of the 
trajectory and on the elevation offset from the deepest to the shallowest part of a trajectory.  The interior 
point Newton method is used to solve the constrained optimization problem. 
 
Introduction 
For unconventional recovery techniques such as SAGD that involve horizontal wells, well design becomes 
an important issue for maximizing the recovery potential.  Geology of heavy oil deposits such as the 
McMurray formation is heterogeneous (Ranger and Gingras, 2003; Deutsch, 2010): surfaces that describe 
the base and top of a recoverable zone could be quite rough or irregular and the spatial distributions of 
reservoir properties such as porosity, permeability, and bitumen saturation show significant variations.  
Moreover, the presence of other features such as bottom water and thief zones (Pooladi-Darvish and 
Matter, 2002; Doan et al, 2003; Law et al, 2003) introduces additional recovery risks that could lead to 
poor well performance if they are not taken into consideration.  Uncertainty is another source of recovery 
risk that should be considered for well design.  The geological features and petrophysical properties of the 
reservoir are never known for certain.  Uncertainty is accounted for by generating a set of alternate 
realities or realizations to represent possible truths.  Uncertainty should be incorporated into well design 
by considering all realizations.  Designing wells with one realization should be avoided.  There is a risk that 
the chosen realization does not represent the true reservoir everywhere.  Also, considering only one 
realization would lead to a design suited to that realization, but not the other possibilities; thus, the 
predictions would be too optimistic. 

In this work, well design refers to determining the optimal depth and trajectory of a generally 
horizontal production well in a SAGD drainage area (DA).  Different approaches can be used to solve this 
problem.  For example, detailed 3D reservoir models and flow simulation could be used to test the 
performance of a design; however, this can be a very time consuming process.  Simplifications are made 
in this approach so that good designs may still be obtained in a fraction of the time.  For purposes of 
optimizing DA configurations (Manchuk and Deutsch, 2012), the model is simplified to 2D, being 
represented by surfaces rather than volumes.  Well trajectories can be designed very fast in this case, 
which is advantageous for the DA optimization problem. 

A description of the well design problem and related functions for approximating potential 
recovery are provided in the first section of this paper.  Well trajectory design is a constrained 
optimization problem that is solved using the interior point Newton method and is developed in section 2.  
The objective function for optimization is to minimize the potential loss in recovery, which is measured as 
the volume of bitumen left behind for a given well design.  Testing is done on a few examples in section 3 
for one reservoir model and for stochastic cases where multiple realizations are accounted for. 
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Problem Description 
The optimization problem is to determine the optimal depth and trajectory of a production well in a SAGD 
drainage area (DA) with the objective of minimizing potential loss in recovery .  Due to computational 
complexity and time constraints, loss is evaluated based on a set of surfaces that describe the geometry 
and quality of the producible zone, where quality is a measure of the bitumen in place.  Three variables 
that describe the reservoir are required and include a reservoir quality variable, a base surface, and gross 
thickness.  In this work, reservoir quality is summarized using net continuous bitumen (NCB) that is the 
total thickness of recoverable bitumen above the base surface (Figure 1).  Net reservoir is often 
determined based on facies and cut-offs for porosity, permeability and water saturation.  The base 
surface is a base of continuous bitumen (BCB) that defines the lowest elevation a horizontal well could 
retain while still being able to recover bitumen from above.  The BCB, NCB and GCB surfaces are derived 
from a 3D reservoir model.  They can be deterministic if only a single reservoir model is available or 
stochastic if the reservoir is modeled by a set of realizations.  In the latter case, the optimization problem 
is solved in a probabilistic sense, accounting for the uncertainty that is quantified by the set of 
realizations. 

The objective function for optimizing well trajectories is defined in barrels of bitumen and 
provides a measure of the potential volume a production well could recover based on information from 
the 2D surfaces.  This volume is actually evaluated as an area from a vertical cross section that traverses 
the well (Figure 2) along coordinate 𝑢 with elevation denoted 𝑧.  The well trajectory is defined as 𝑧(𝑢), or 
elevation as a function of 𝑢.  The point 𝑢 = 0 indicates the start of the producible portion of a well, or the 
heel, and 𝑢 = 1 indicates the end of the producible portion, or the toe. 
Well trajectory elevation is not restricted to be horizontal.  Some flexibility within user specified 
constraints is permitted so that trajectories may be designed to provide better conformance to the BCB 
surface than a strictly horizontal well.  To allow flexibility, wells are represented using a Hermite spline 
(Hearn and Baker, 2004), which is a piecewise cubic polynomial defined by Eq. 1, where 𝑎, 𝑏, 𝑐,𝑑 are 
constants. 
 3 2( )z u au bu cu d= + + +   (1) 

Hermite splines are defined by four parameters: two end-points and the slope at each end-point.  For a 
well, the endpoints are at �𝑢, 𝑧(𝑢)�,𝑢 = 0,1, and the slopes are defined by 𝑧′(𝑢),𝑢 = 0,1, where 𝑧′(𝑢) is 
defined by Eq. 2. 
 2( ) 3 2z u au bu c′ = + +   (2) 

Knowing the endpoints and slopes, the elevation of any point along a trajectory is defined by Eq. 3, where 
𝐌 is a Hermite coefficient matrix. 
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Hermite splines have nice features for well trajectory specification.  With only two endpoints, the well 
cannot have more than one undulation (up-down-up feature or vice versa).  Having more undulations 
could be detrimental to production since such a design has a tendency to impede flow.  Since the 
endpoints and slopes are specified, it is possible to consider wells that are strictly horizontal or strictly 
linear with a constant slope.  Wells can be defined as toe-up or toe-down (Figure 3).  Incorporating 
constraints such as a maximum slope and maximum allowable vertical deviation along the well is possible 
(Figure 4), where maximum vertical deviation measures the elevation difference between the highest and 
lowest points along a trajectory. 
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Maximum vertical deviation and maximum allowable slope constraints have been incorporated 
into the well trajectory optimization problem.  These constraints are important because they could relate 
to production performance.  For example, too excessive of a slope may lead to ineffective pressure and 
thermal gradients along the producer that could impede flow.  Too large a vertical deviation along a well 
could also lead to a portion of a producer being close to or above the elevation of the associated injector 
(Figure 5).  This situation could lead to premature steam bypass from the injector into the producer.  If the 
elevation offset from the producer to the injector is to be 5 m for example, the maximum vertical 
deviation should be no more than 5 m.  Further explanation is provided on these constraints in the 
following section on optimization strategy. 

A similar situation where steam bypass can occur is from a neighbouring injector if a production 
well is too high above it (Figure 6).  An additional constraint would need to be incorporated to prevent 
this situation from occurring.  Well trajectories would need to be optimized in a joint fashion for all wells 
within a drainage area.  There may also be a need to consider adjacent DA’s when the well pairs are close 
enough together. 

Once a well trajectory is designed, evaluating the area of bitumen lost is done by integration.  
Although the BCB and other surfaces have been portrayed as continuous thus far, it is more common to 
encounter these properties as discrete functions that are defined only at the centre of a set of grid cells 
from a reservoir model (Deutsch, 2002).  To facilitate the integration process, discrete functions defining 
the surfaces are re-parameterized as piecewise linear functions along 𝑢.  The integral is evaluated 
between the producer and the BCB when 𝑧(𝑢) > 𝑧𝐵𝐶𝐵(𝑢) and is done using integration by parts, where 
each part is a segment of the piecewise functions (Figure 7). 

The bitumen lost is a function of the well trajectory and the surfaces defined by Eq. 4, which can 
be interpreted as the portion of NCB below 𝑧(𝑢).  This assumes the NCB is uniformly distributed between 
the BCB and TCB and is a consequence of representing 3D models with 2D surfaces.  It is possible to utilize 
other surfaces, for example, one that describes vertical trend information for NCB to give an improved 
approximation of the true vertical distribution of NCB.  Such surface are not explored in this work, but are 
considered for future research. 
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Integrating Eq. 4 for one part is given by Eq. 5, where 𝑢 = 𝑎𝑘 and 𝑢 = 𝑏𝑘 define the limits of integration 
for part 𝑘 and 𝐹𝑘 defines the bitumen lost for part 𝑘. 
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The sum of bitumen lost over all parts gives the total bitumen lost; however, not all portions of a producer 
are necessarily above the BCB.  Any portion of the well that is below the BCB is referred to as ineffective 
well length in this work.  In general, ineffective well length leads to additional losses in recoverable 
bitumen.  Because injected steam propagates laterally as well as vertically (Butler, 1991; Butler, 1994), 
there is some tendency for bitumen to be drained from above ineffective segments into nearby effective 
portions of the producer.  After operating the injector-producer well pair for some time, the steam-oil 
interface where the majority of drainage occurs can be approximated by a plane with an angle 𝜃 from 
horizontal (Figure 8).  This angle is a user specified value that defines a cone of trapped oil above 
ineffective well length. 

Evaluating bitumen lost for portions of a well that are ineffective involves finding the points of 
intersection between the producer and the BCB, so that the cones of lost bitumen can be defined.  
Finding intersections can be done using any root finding technique for continuous polynomials 
(McNamee, 2007).  Halley’s method (Scavo and Thoo, 1995) was used in this work.  Bitumen lost for a part 
above ineffective well length is defined by Eq. 6, where 𝑠(𝑢) defines the steam-oil interface. 
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The limits of integration, 𝑎𝑘 and 𝑏𝑘, may take on different values of 𝑢 depending on how the integration 
part is defined and include an intersection point, one of the discrete locations, or the apex of the cone.  
Similarly in Eq. 5, limits of integration may be associated with discrete locations or intersection points. 

Selection of 𝜃 can have a significant impact on trajectory design.  The extreme cases are zero 
degrees, which implies that all bitumen above ineffective segments is drained, and 90 degrees, which 
implies that all bitumen above ineffective segments is lost.  A zero degree case is only reasonable if the 
ineffective segment is short relative to the total length of the well.  For longer ineffective well segments, a 
reasonable value for 𝜃 would be determined by an economically sustainable flow rate because as 𝜃 
decreases, so does the flow rate (Butler, 1994). 

Optimization Strategy 
The objective function that measures the amount of bitumen lost for a given well trajectory is continuous 
and twice differentiable so it is possible to parameterize the optimization problem using Newton’s 
method (Boyd and Vandenberghe, 2004; Sun and Yuan, 2006).  The optimization problem is to minimize 
the total bitumen lost over the length of a production well.  Total bitumen lost is defined by Eq. 7, where 
𝑚 is the total number of parts for integration and 𝐿 is the number of realizations if the problem is 
stochastic. 
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In deterministic cases, 𝐿 = 1, and the outer sum is not necessary.  For multiple realizations, this Eq. gives 
total bitumen lost over all realizations, as opposed to the mean loss, since either case will result in the 
same optimal trajectory.  However, it is not correct to optimize the trajectory with the mean of the BCB, 
GCB and NCB surfaces as this approach is not guaranteed to minimize the mean loss over all realizations 
due to the non-linear objective function. 

Newton’s method requires the gradient, ∇𝐹, and Hessian, ∇2𝐹, of the objective function that is 
determined by evaluating the integral in terms of 𝑢 and taking the first and second derivative in terms of 
the parameters in the vector 𝐜 from Eq. 3.  This information is adequate to solve the unconstrained well 
trajectory optimization problem, where 𝐜 is updated iteratively according to Eq. 8, and 𝛼 is the step size 
usually determined using a line search to prevent divergence.  The approach is summarized in Algorithm 
1. 

 ( ) ( )12
1 1j j jF Fα α

−

− −= + ∇ −∇ = + ∆c c c c   (8) 

Algorithm 1: Unconstrained Well Trajectory Optimization 
Input. An initial vector 𝐜, BCB, GCB, NCB 
Output. 𝐜∗ that minimizes the objective. 
1. Compute the Newton step: ∆𝐜 = −(∇2F)−1∇F 
2. Determine step size 𝛼 using a line search. 
3. Update 𝐜 according to Eq. 8. 
4. Stop if ∇𝐹𝑇(∇2F)−1∇F < 𝜀, otherwise repeat from 1. 
 
Initializing 𝐜 is straightforward, for example, a horizontal well with an elevation equal to the average BCB 
could be used.  The quantity used for stopping criteria is called the Newton decrement (Boyd and 
Vandenbergh, 2004), and can be interpreted as the directional derivative of 𝐹 in the direction of ∆𝐜.  
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When the decrement is close to zero, indicated by a small value, 𝜀, a minimum of the objective has been 
found.  Because Algorithm 1 is unconstrained, it will tend to result in trajectories that follow the BCB as 
close as possible.  If large changes in elevation are present in the base, then the trajectory could also have 
large elevation deviations and this is not necessarily optimal for recovery.  Algorithm 1 could be used to 
optimize the elevation of a horizontal well by zeroing the components of ∇𝐹 and ∇2F associated with 
endpoint slope and initializing 𝐜 to be horizontal. 

Incorporating the two constraints mentioned in the previous section, maximum vertical deviation 
and maximum slope, is accomplished using the interior point Newton method.  Constraints are 
approximated using logarithmic barrier functions (Figure 9).  With these constraints, the objective 
function is expressed as Eq. 9, where 𝑟 is a scaling parameter, 𝑎0, 𝑎1, and 𝑑 are indicated in Figure 4, and 
𝑑𝑚𝑎𝑥  and 𝑎𝑚𝑎𝑥  are the maximum allowable vertical deviation and slope respectively. 

 ( ) ( ) ( )max max 0 max 1
1 log log logG F d d a a a a
r
 = − − + − + −    (9) 

To solve the constrained optimization problem using Newton’s method, the gradient and Hessian of Eq. 9 
are computed.  Interior point methods require a feasible starting vector, 𝐜, that is, it cannot violate any of 
the constraints.  In the approach developed, the starting point is a horizontal well with an elevation equal 
to the maximum observed elevation of the BCB across all realizations.  For each iteration of Newton’s 
method, 𝐜 is updated using Eq. 10, where 𝛼 is the step size determined using a line search such as the 
golden section search (Sun and Yuan, 2006). 

 ( ) ( )12
1 1j j jG Gα α

−
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A line search is used to maintain a feasible 𝐜 and to prevent divergence as in Algorithm 1.  It is possible 
that the well trajectory that minimizes the loss falls exactly on one of the constraints.  The notion of 
central path is used so that the trajectory gradually approaches one or all of the constraints, since with 
the interior point method it is difficult to improve on a solution once constraints are encountered exactly.  
The central path defines the sequence of optimal vectors, 𝐜∗, that minimize the objective for increasing 
values of 𝑟.  Constrained well trajectory optimization is accomplished by Algorithm 2. 
 
Algorithm 2: Constrained Well Trajectory Optimization 
Input. An initial feasible vector 𝐜, BCB, GCB, NCB, 𝑟 
Output. 𝐜∗ that minimizes the objective. 
1. Compute 𝐜𝑖∗: 
2.  Compute the Newton step: ∆𝐜 = −(∇2G)−1∇G 
3.  Determine step size 𝛼 using a line search. 
4.  Update 𝐜 according to Eq. 10. 
5.  Continue from 6. if ∇𝐺𝑇(∇2G)−1∇G < 𝜀, otherwise repeat from 2. 
6. Update 𝑟𝑖 = 𝜇𝑟𝑖−1 
7. Stop if 𝑟𝑖 > 𝑅, otherwise repeat from 1. 
 
In Algorithm 2, 𝑖 is the iteration number for the sequence of solutions, 𝐜𝑖∗, found for each value of 𝑟.  The 
value 𝜇 is a multiplier that controls the growth rate of 𝑟.  𝜇 = 10 was used in this work.  𝑅 is typically set 
to a large number such as 1 × 109, at which point the logarithmic barriers are nearly exact 
approximations to the constraints and the resulting solution is at a minimum of the objective function 
within the feasible region. 

In cases where the BCB, GCB and NCB are characterized by high spatial variability, the objective 
function may have several local minima or plateaus and the solution from Algorithm 1 or 2 may not be the 
global minimum.  To accommodate this possibility, a random restart component is considered in the 
algorithm.  After Step 7, a new feasible initial 𝐜 is randomly generated and the algorithm is restarted at 
Step 1.  If after a sufficient number of restarts the minimum is unchanged, 𝐜∗ is assumed to be globally 
optimal. 
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Examples 
Several examples are used to demonstrate features of the optimization approach including: convergence 
of bitumen loss; impact of the maximum slope constraint and the maximum vertical deviation constraint; 
well position for different values of 𝜃; and the impact of multiple realizations.  All examples use wells that 
are 1200 m long.  During optimization, wells are scaled to the [0,1] interval as in the previous sections.  
The first examples use analytical functions for the BCB surface to demonstrate that the algorithm can 
converge to the exact base when it can be expressed as a Hermite spline.  Functions for the BCB include a 
linear, parabolic, and cubic function defined in Eq. 11.  NCB was set to a constant 10 meters and the GCB 
was set so that the TCB was flat. 

 ( )2

3

linear: ( ) 100

parabolic: ( ) 100 20 1/ 2
cubic: ( ) 100 20( 1 / 2)

BCB

BCB

BCB

z u

z u u
z u u

=

= − −
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  (11) 

Maximum slope and maximum vertical deviations constraints were set to 4 degrees and 5 meters 
respectively.  Results are shown in Figure 10.  In all cases, the bitumen lost is low and the well trajectory 
falls approximately on the BCB surface.  Large jumps in loss on the convergence plots are associated with 
a random restart step.  Performance was best for the cubic surface since the error is lowest.  Also, each 
random restart converged to a similar minimum value.  Variation in minima achieved for the parabolic 
and linear surfaces indicate these problems were more difficult to solve.  Although the BCB functions have 
less variation in these two cases, the optimal solution is more constrained, that is, for the linear surface, 
the optimal end-point positions are equal and end-point slopes are zero, and for the parabolic surface the 
optimal end-point positions are equal and end-point slopes are exactly opposite.  Detection of such cases 
is not part of the algorithm leading to some deviation.  In addition to this, the loss is non-zero because the 
BCB surface is piecewise linear and defined by 19 points, which is indicated using a zoomed in portion of 
the parabolic example in Figure 11.  

The maximum vertical deviation constraint is demonstrated using the parabolic BCB example.  
Deviations ranging from zero to five in increments of one were set as the constraint (Figure 12).  For all 
cases, optimization converges to a well with a vertical deviation nearly equal to the constraint value 
(Table 1).  The algorithm tends to converge faster for cases where the problem is less constrained relative 
to the geometry of the BCB surface. 
 

Table 1: Deviation constraint and resulting trajectory deviation 

Deviation Constraint Deviation in Trajectory 
0 0 
1 0.9999 
2 1.9999 
3 2.9999 
4 3.9998 
5 4.9994 

 
The horizontal well case from Figure 12 can be solved more directly without the use of logarithmic 
barriers.  A single iteration of an exact line search algorithm converges to the minimum under the 
following parameterization: the initial end-point elevations are set to the maximum value of the BCB; the 
Newton step is set to ∆𝐜 = [1 1 0 0], and the initial bracket for the line search is from the maximum 
BCB to the minimum BCB.  This approach is used in the DA optimization algorithm presented in the 
associated paper.  It is much faster and provides a useful initial estimate of the DA value for finding a good 
DA configuration, prior to executing more advanced well optimization strategies. 

To demonstrate the effect of different endpoint slope constraints, a somewhat rougher function 
is used for the BCB.  The function is a convex downward parabola augmented by a sin function (Eq. 12). 
 
 2( ) 100 20( 1 / 2) sin(30 )BCBz u u u= + − +   (12) 
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The NCB function was also changed to follow Eq. 13, so that NCB was high where the BCB was low and 
should cause the well to intersect the base where the NCB is thin. 
 

 ( )( )( ) 10 1 sin 30( / 2)NCBh u u π= + −   (13) 

Endpoint slope constraints were set to 0.1, 0.3, 0.5, 0.7 and 5 degrees and the maximum vertical deviation 
constraint was not imposed.  For reference, the absolute slope of the parabolic component of Eq. 12 at 
𝑢 = 0 is approximately 0.95 degrees.  The slope of the steam-oil interface was set to five degrees.  As the 
slope constraint increases, the well trajectories conform better to the BCB (Figure 13).  Wells also tend to 
intersect the local highs of the BCB because of the higher quality associated with lows. 

The same example is used to demonstrate the effect of the steam-oil interface angle, 𝜃.  A 
maximum slope of 5 degrees is used for five different cases: 𝜃 = 1, 4, 8, 10, 45.  Intuitively, as the angle 
decreases, the well is positioned lower in the BCB surface (Figure 14).  For large enough angles, the loss 
for ineffective well segments is large enough that no portion of the well intersects the BCB. 

More realistic surfaces are used for an example involving multiple realizations.  The maximum 
slope constraint was set to 4 degrees and maximum vertical deviation constraint to 5 m.  The steam-oil 
interface angle was set to 3 degrees.  10 realizations were considered (Figure 15).  Realizations are 
indicated with light lines while the minimum, mean, and maximum observed values for BCB and NCB are 
shown with heavy lines.  NCB is plotted as BCB + NCB for visualization purposes.  For multiple realizations, 
the loss is computed using Eq. 7 and is the sum of the loss over all realizations.  The well trajectory was 
initialized to a horizontal well with an elevation equal to the maximum elevation of the BCB realizations, 
which is 115.37 m.  Initial and final loss was 57.23 and 16.25 respectively.  Had the well been optimized 
using the expected value of the BCB rather than all realizations simultaneously, the total loss is 
significantly higher.  For example, shifting the optimal trajectory in Figure 15 down 2 m to be closer to the 
mean BCB surface results in a loss of 50.5. 

A few execution times were recorded from the previous examples.  Time depends on factors 
such as grid resolution, number of realizations, and surface complexity.  In general, execution time is fast 
even for a large number of realizations.  For the horizontal well case with 10 realizations, optimization 
takes approximately 7.6 milliseconds per well.  For deviated trajectories and 10 realizations, optimization 
took roughly 313 milliseconds per well, or 41 times longer.  This significant increase in time is one reason 
for maintaining horizontal wells for the DA configuration optimization problem.  Timing was done on a 2.8 
GHz processor. 

Conclusions 
This paper introduced an approach to optimize well trajectories for the SAGD recovery process.  The 
problem was setup in two dimensions assuming that a three dimensional reservoir model could be 
summarized by surfaces that represent base and top geometry as well as the distribution of recoverable 
bitumen.  The objective function gives a rough estimate of bitumen left behind for a given problem and 
trajectory.  Moreover, optimization can be solved quickly; therefore, the approach is applicable to 
optimizing drainage area configurations as discussed in Part I of this two paper series.  It is also possible to 
optimize trajectories with multiple realizations.  A clear disadvantage of the approach is the simplicity of 
the problem representation.  Geological complexity may not always make it feasible to approximate the 
reservoir using surfaces and the objective does not account for the physics of the SAGD recovery process.  
An area of future research is to develop well trajectory optimization for detailed three dimensional 
models of drainage areas and with physics-based proxy models.  The objective function would be 
calibrated to simulation results and make it possible to consider cumulative oil production and steam-oil 
ratio during the trajectory optimization process. 
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Figure 1: Schematic of NCB, BCB and GCB. 

 
Figure 2: Vertical cross section along a production well. 

 
Figure 3: Possible well trajectory designs using a Hermite spline. 
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Figure 4: Illustration of vertical deviation, 𝑑, and end-point slopes, 𝑎0 and 𝑎1. 

 
Figure 5: Illustration of steam bypass from an injector to a producer in the same well pair. 

 
Figure 6: Illustration of steam bypass from an injector to a neighbouring producer. 

 
Figure 7: Illustration of discrete surfaces using BCB as an example and associated parts for integrating the 

bitumen lost beneath a producer. 

 
Figure 8: Illustration of the steam oil interface as a function of 𝜃 (left) and integration by parts for 

ineffective segments of a production well (right). 
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Figure 9: Logarithmic barrier for different values of 𝑟 for the maximum vertical deviation constraint.  As 

𝑑 → 𝑑𝑚𝑎𝑥 , the function approaches infinity. 

 
Figure 10: Well optimization algorithm applied to three analytical BCB surfaces.  Resulting minimum loss is 

indicated on convergence plots. 



Paper 208, CCG Annual Report 14, 2012 (© 2012) 

 208-11 

 
Figure 11: Zoomed portion of the parabolic BCB to show piecewise representation. 

 
Figure 12: Optimized trajectories for various maximum vertical deviations (left) and associated loss 

convergence curves (right).  In right plot, first number is 𝑑 and second number is minimized loss. 

 
Figure 13: Optimized trajectories for various slope constraints (left) and associated loss convergence 

curves (right).  In right plot, first number is 𝑎𝑚𝑎𝑥  and second number is minimized loss. 
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Figure 14: Optimized trajectories for various steam-oil interface angles (left) and associated loss 
convergence curves (right).  In right plot, first number is 𝜃 and second number is minimized loss. 

 
Figure 15: Well trajectory optimization with multiple realizations. 
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