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Updated Methodology for Permeability Modeling with Core Photos 
and Image Logs 
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The permeability modeling is a key element in construction of a geological model for petroleum reservoir 
characterization. It is unusual that core data is biased due to core handling, dilation, and preferential 
sampling. It is impossible to directly measure permeability by logging tools, and well test is hampered at 
bitumen rich oil sands reservoirs in northern Alberta. All these and other factors lead to limited 
permeability data. On the other hand, secondary highly correlated data can be used to infer permeability. 
There is a strong relationship between permeability and porosity, which is better-off sampled. Core photos 
and image logs (FMI) may even further improve permeability estimate. It is important to properly 
assimilate available auxiliary data that come from different sources and heterogeneity scales. Thus, by-
facies multiscale permeability modeling workflow is proposed. The image data in addition to porosity-
permeability relationship from core and petrophysical log data are used to supplement insufficient 
permeability measurements. The methodology consists of three main stages: micro, mini, and reservoir 
scale modeling, which is improved and simplified from legacy approaches. Monte Carlo simulation of 
porosity-permeability relationship is replaced with parametric regression fitting. Updated workflow 
properly assimilates and debias multiscale data. Vertical permeability is derived along with horizontal 
permeability, which is crucial for successful implementation of steam assisted gravity drainage (SAGD) 
heavy oil extraction technique. Permeability modeling of inclined heterolithic strata (IHS) facies at micro- 
and minimodeling scales is demonstrated with realistic case study that shows improvement of 
permeability. 
 
Introduction 
The primary objective of a petroleum geomodeling study is to build plausible geological model at 
appropriate scale. A geomodeling workflow may vary depending on purpose of the model and available 
data. In general, first, structural elements such as horizons, surfaces, and faults are modeled and then 
populated with representative petrophysical and geomechanical properties by-facies. Final geomodel 
should honor the data and is fed to flow simulation in order to describe future reservoir performance and 
predict production rate. Facies, porosity, and permeability are three most important petrophysical 
properties that determine lithology of a reservoir, volume of deposited oil, and how easily it can be 
produced, respectively. In northern Alberta oil sands reservoirs, vertical permeability is of the highest 
interest, because vertical flow is crucial in widely implemented steam assisted gravity drainage (SAGD) 
bitumen extraction technique (Butler, 1991). Vertical permeability defines communication between 
horizontal injector and producer, and establishes fluid flow paths from a reservoir to production wells. 

Facies and porosity data come from core inspection, lab tests, and petrophysical surveys. Facies 
that are computed from a set of petrophysical logs using data classification or discrimination techniques 
are called electrofacies. Usually, log porosity measurements exceed log porosity data in number, since 
there are no missing log porosity measurements in logged wells. But core porosity data are missing from 
time to time, and especially in poor consolidated reservoirs. While core porosity data represent total 
porosity, log porosity measurements define effective values, which are used in modeling. Therefore, core 
porosity should be corrected against log porosity. 

Permeability can be also measured at a core lab. But it is impossible to neither conduct a well 
test in a reservoir saturated with viscous oil, like bitumen in oil sands, nor measure permeability by 
petrophysical logs. Highly correlated porosity-permeability relationship and auxiliary data can be used to 
supplement insufficient permeability measurements and additionally constrain permeability models. In 
this paper, core images and image logs are used in addition to conventional set of data to build 
permeability models. Core data, petrophysical logs, and image data are sampled at different scales, which 
should be properly accounted for. Moreover, bias in core data and logs should be diminished.  

Sequential multiscale modeling procedure of permeability conditional to porosity is not a novel 
idea. Permeability models are built within geostatistically stationary domains, which are represented by 
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facies in a geological setting. Therefore, facies model is constructed first. Then, more exhaustively 
sampled core data is used to build porosity models for each facies. Porosity-permeability transform from 
core data is used to co-simulate permeability field for each facies type (Deutsch, 2002). However, typically 
image data is not used to constrain permeability models. 

The main reason for use of the core images (CIM) and image logs (FMI) in this study is that they 
represent smaller scale and, therefore, capture more detailed spatial information about configuration of 
heterogeneities in every facies. The core image is a color photo of a core sliced into half. The core photos 
are available for the most of the observation wells in northern Alberta oil fields. The core images are 
provided in JPG, TIF, or PDF formats.  A sample of processed TIF core image is shown in Figure 3. The FMI 
abbreviation stands for the full bore formation micro image, which is an output of a tool developed by 
Schlumberger, and represents 3600 wellbore-long measurement of the micro-resistivity of the borehole 
wall (Niven and Deutsch, 2011). The FMI data is provided in PDF or DLIS formats, a processed PDF sample 
of FMI is shown in Figure 4. The image data were provided by a TarCore lab for academic purposes at 
GeoConvention 2012, which is annually held in Calgary, Alberta. 

There are some pros and cons associated with use of core images and FMI data, which are 
summarized in Table 1. The main advantage of using core images over FMI in by-facies porosity-
permeability modeling is that the core photo is a direct physical measurement of rock structural patterns 
and texture of higher resolution with more details. The main advantage of FMI over core image is that the 
FMI is sampled along an entire well bore and represents 3D volume. 

 
Table 1: Pros and cons of core images and FMI data usage in by-facies porosity-permeability modeling 

 
Data Pros Cons 

Core image 

Direct visual representation of rock 
heterogeneities  

Poor coverage - some intervals are missing 
(not available along entire wellbore) due to 
core sampling and specimen crumbling, 
possible depth shift 

High resolution with detailed 
structure and texture of the rock 

2D sample of small size (about 8 cm width) 

Easy to identify facies, except 
bitumen rich intervals 

Easy, but slow digitization from any available 
formats like JPG, TIF, and PDF (manual 
process) 

FMI 

Available along entire well bore Indirect measurements of the rock 
heterogeneities (micro resistivity) and image 
artifacts due to pads sticking 

3D representation of the rock 
heterogeneities (bedding directions) 

Lower resolution than in core images 

Easy and fast digitization from DLIS 
format (automatic process) using 
freeware DLIS2ASCII program by 
Schlumberger 

Hard to identify and differentiate some facies, 
especially indurate sandstone and mudstone 

 
This paper summarizes and improves existent multiscale modeling approaches of horizontal and 

vertical permeability in petroleum reservoirs, depositional environment of which is dominated by binary 
sand-shale sequences and shale clusts. Benefits of previous approaches are emphasized and improved. 
Shortcomings are addressed and resolved. Time consuming percolation modeling and subsequent Monte 
Carlo simulation (MCS) of porosity-permeability relationship are replaced with fast parametric regression 
fitting. The proposed methodology consists of three stages in order to account for varying data scales. 
First, micromodeling is performed, in which core images and/or image logs are digitized by-facies to 
account for small scale lamination in inclined heterolithic strata (IHS) facies and mud clusts in breccia 
facies deposited in tidally influenced reservoirs. Then, digitized images are combined with corrected core 
data to build porosity and permeability models at decimeter scale. Second, minimodeling is carried out to 
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incorporate petrophysical log data with results from previous stage into porosity-permeability models at 
meter scale. Finally, facies and porosity models are built at petroleum reservoir scale conditional to 
cleaned log data. Permeability model is co-simulated using porosity model, the porosity-permeability 
transform from minimodeling stage, and knowledge of permeability spatial structure. 

This paper is organized as follows. First, a methodology for multiscale modeling of by-facies 
porosity-permeability relationships with core images and image logs is presented in details. Second, a 
case study is shown to understand benefits and drawbacks of use of core images and image logs. It is 
found that CIM- and FMI-based modeling results are similar with higher uncertainty imbedded into FMI 
data. Finally, conclusions are made, and future work is defined. 
 
Workflow 
The workflow presented in this paper is similar to previous by-facies multiscale permeability modeling 
approaches developed and promoted at the CCG. Number of peer-reviewed papers and conference 
articles are available. Early paper by McLennan et al. describes modeling of permeability at reservoir scale 
conditional to previously simulated porosity models and porosity-permeability relationship defined at the 
minimodeling scale (McLennan et al., 2006). Omitting important micromodeling scale, which may be 
supported by core images or image logs, leads to poor reproduction of V-shale. Several strong 
assumptions regarding minimodeling scale, like Gaussian nature of the porosity-permeability transform, 
are not supported by the data. Paper by Hosseini et al. attempts to resolve these issues by introducing 
missing micromodeling scale (Hosseini et al., 2008). Only core images are used to constrain the model at 
micromodeling scale. The results look promising, but the workflow is very tedious and only global 
porosity-permeability transform function can be derived, and no local permeability modeling tied to wells 
is performed due to missing intervals of core data. Knowing exact permeability values at the well locations 
should improve model quality. Therefore, use of image logs (FMI or HMI) is proposed by Niven and 
Deutsch to locally build permeability models along the wells and populate rest of 3D permeability models 
by geostatistical tools such as sequential Gaussian simulation (Niven and Deutsch, 2009). Measured micro 
resistivity is sensitive to presence of formation fluid around well bore and, thus, special attention should 
be made while digitizing water/gas saturated zones of FMI. An overview paper on multiscale permeability 
modeling can be found in (Deutsch, 2010) with some numerical examples in (Niven and Deutsch, 2011). 
Inherent advantages of these legacy multiscale porosity-permeability modeling approaches are 
construction of representative porosity-permeability relationship for each facies, debiasing core data, and 
cleaning log data. The bias is introduced by measurement errors, core handling, core dilation, preferential 
sampling, etc., and leads to elevated porosity and permeability values and missing measurements for low 
porosity tail (Figure 1). 

The proposed workflow preserves the best of legacy approaches, and benefits in its robustness, 
maturity, and multiscale data honoring. Time consuming percolation modeling and subsequent Monte 
Carlo simulation (MCS) of porosity-permeability relationship are replaced with fast parametric regression 
fitting (Hosseini et al., 2008). The workflow consists of three main stages defined by various scales. First 
two stages are thoroughly explained with case study. Three stages are: 

1- micromodeling stage 
2- minimodeling stage 
3- reservoir scale modeling stage 
Introduction of three different modeling scales is motivated by different data support and target 

model scale. The data resolution and model grid specification used at each stage are summarized in Table 
2. The output from antecedent stage is fed to subsequent stage. Note that this workflow is intended to 
build by-facies “global” by-facies porosity-permeability relationships for permeability modeling. The 
workflow can be slightly modified to locally co-simulate permeability along the well bore similar to 
approach by (Niven and Deutsch, 2009) and to omit regression fitting.  

More detailed description of the multiscale modeling approach is provided below. High level flow 
chart for proposed permeability modeling is presented in Figure 2. Micromodeling stage is intended for 
establishment of by-facies parametric porosity-permeability relationships at core plug scale ~2.5 cm, 
which are used as transformation tables in minimodeling stage. Permeability is derived from cleaned log 
porosity in minimodeling stage at a core plug resolution and upscaled to ~1.0 m, which is about block size 
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of reservoir scale model. Resultant porosity-permeability transformation function for each facies in the 
form of a regression model is used at reservoir scale to build by-facies permeability models conditional to 
previously simulated porosity models and permeability spatial structure. 

 
Table 2: Approximate size of micro-, mini-, and reservoir scale models and their blocks 

 
Scale Block Size ~ Model Size ~ Representative Data 

Micromodeling scale 1 x 1 x 1 mm 1 x 1 x 1 dm Core images and FMI 
Minimodeling scale 1 x 1 x 1 dm  1 x 1 x 1 m Core and log data 
Reservoir model scale 1 x 1 x 1 m 10n x 10n x 10n m, n > 1 Upscaled data above 

  
 The multiscale modeling starts with data analysis. Petrophysical porosity and V-shale, core 
porosity, core permeability, Kver/Khor permeability ratio and core V-shale are cleaned and assigned to 
associated facies from logs/core data according to lithology. Log porosity and V-shale data are cleaned by 
matching log facies data to core facies meauremnets and adjusting other petrophysical properties 
accordingly. Inflated core porosity data should be corrected by cleaned log data by matching mean values 
of two distributions. Simple multiplication of core porosity values by ratio of mean log porosity to mean 
core porosity is sufficient. A threshold may be applied to avoid unrealistically low values of corrected core 
porosity. Semivariogram models of by-facies cleaned log porosity and V-shale should be derived for later 
use in geomodeling. 

The micromodeling stage consists of the following steps: 
1- Select several by-facies representative core images/FMI data and digitize them as sand (0) or 

shale (1) units with fixed interval length. Lithological facies in the tidally influenced estuarine 
depositional systems of McMurray formation can be viewed as a binary mixture of good and 
bad quality rock units, like sand and shale. The difference between facies lies in the 
proportions, texture, structure, and continuity of sand-shale units. Some examples of typical 
estuarine facies are sand, breccia, sandy IHS (SIHS), muddy IHS (MIHS), mudstone, etc., 
which may be bioturbated or degraded by the time. This conceptual understanding of 
McMurray facies defines digitization aspect at micromodeling stage. V-shale and resistivity 
logs may be used in couple to assist in automatic digitization and reduce inherent effect of 
radioactive sand and formation water/gas on these log readings. GIMP or DLIS2ASCII 
freeware may be used to convert original image data formats like TIF and DLIS to ASCII. 

2- Calculate elementary statistics for each digitized training image: mean and proportions. 
3- Build anisotropic variogram model for each binary data set. 
4- Create a 3D binary data set either by rotation or transposition for each digitized core image. 
5- Build single realization of 3D binary indicator models (geo-blocks) using any categorical 

variable modeling technique for each digitized image interval. The models will consist of 
clean sand and clean shale units at pixel resolution. Multiple-point statistics (MPS) may be 
preferred over sequential indicator simulation (SIS). Dipping is important feature of 
laminated facies like IHS and should be preserved in 3D binary models. 

6- Populate binary indicator models with representative clean sand and clean shale porosity 
and permeability values. Corrected sand and shale facies distributions are used as to derive 
these representative values. Corrected core porosity is no longer associated with total 
porosity, but rather with effective porosity. Populated clean sand permeability is further 
adjusted to local V-shale content. 

7- Find effective values of petrophysical properties by upscaling populated models from pixel 
scale to scale of a micromodel, which is about core plug scale. Use arithmetic averaging for 
porosity upscaling, and steady-state single-phase flow simulator for permeability upscaling. 

8- Combine upscaled values from all images together for each facies, and fit statistical 
regression models to each combined upscaled porosity-horizontal permeability relationship. 
Assume constant Kver/Khor permeability ratio from core data, which will be used as input to 
minimodeling stage. 
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The procedure of minimodeling stage is as follows: 
1- Construct by-facies N realizations of porosity models at core plug resolution using 

variograms of cleaned log porosity data and their histograms as reference distributions. SGS 
may be a good simulation tool. 

2- Co-simulate with cloud transformation (p-field simulation) N realizations of Khor models for 
each facies conditional to N porosity minimodels from step 1 using porosity-horizontal 
permeability regression model from micromodeling stage and V-shale variogram model to 
generate probability field. It is believed that V-shale variogram is an adequate substitute for 
Khor variogram, because experimental variogram range of V-shale is less than variogram 
range of porosity data. Difference in variogram ranges is dictated by larger spatial variability 
in permeability field in comparison with porosity. Assume Kver to be a product of simulated 
Khor and constant permeability ratio from core data. 

3- Upscale porosity and permeability from core plug scale to minimodeling scale (~1.0 m) 
similar as it is done in the micromodeling stage. 

4- Fit statistical regression models by-facies to upscaled porosity-Khor and Khor-Kver values and 
use these models later on in reservoir scale modeling. Note that Kver/Khor-horizontal 
permeability curve is obtained from Khor-Kver fit regression model. Both deterministic and 
stochastic regression modeling options are available. 

The reservoir scale modeling is a final stage in porosity and permeability modeling. The output of 
this stage should be used for reservoir forecasting by full field simulation. Reservoir scale modeling is 
straightforward and, thus, not included into the case study. The procedure is described below and similar 
to minimodeling. 

1- Build N realizations of facies model at the reservoir scale using corrected core and cleaned 
log data. Again, MPS may be preferred over SIS. 

2- Construct N realizations of porosity models for each facies using cleaned log data. 
3- Simulate by-facies horizontal permeability Khor by cloud transformation using constructed 

porosity models from step 2, statistical porosity-horizontal pemreability regression models 
from minimodeling, and V-shale variogram models as substitute for horizontal permeability 
variogram models. 

4- Simulate by-facies Kver/Khor ratio using core data and V-shale variogram model and derive 
vertical permeability from product of Khor and Kver/Khor. Or simulate for each facies Kver by 
cloud transformation using constructed Khor models from step 3, statistical Khor – Kver 
regression models from minimodeling stage, and V-shale variogram models as substitute for 
vertical permeability variogram models. 

5- Use derived petrophysical properties in flow simulation for reservoir forecasting 
A case study on multiscale porosity and permeability modeling for IHS facies is shown below.  

Final core image- and image log-based permeability models are constructed separately to compare 
informational value of each data type. Role of the regression models is emphasized. 
 
Case Study 
The goal of this case study is to show how proposed permeability modeling methodology can be used 
with core image and image log data to build representative porosity-horizontal permeability and 
horizontal permeability-vertical permeability relationships at micro- and minimodeling scales. These 
relationships are used to derive final porosity and permeability models at reservoir scale. Both CIM and 
FMI are found to equally well improve the permeability estimate with higher variability present in FMI-
based models, which is due to larger sampling volumes and lower data resolution. The FORTRAN 
programs used in this work can be enquired from the authors. 

The image data are provided by TarCore lab. All other modeling parameters are adapted from 
(Deutsch, 2010) and assumed to be corrected and cleaned. Therefore, no data analysis is necessary. 
Scatter plot of typical uncorrected core porosity and horizontal permeability data of IHS facies is shown in 
Figure 1. It is believed that mean porosity value of 0.326 is too high for IHS and is inflated due to several 
previously discussed factors like core dilation. There are no enough data at lower porosity tail either. The 
measured Kver/Khor ratio is assumed to be higher than 0.7 and shown in Figure 16 in magenta. The task is 
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to derive representative porosity-permeability relationship for IHS facies at reservoir modeling scale by 
correcting core porosity values, extrapolating porosity-permeability function for low values, and properly 
accounting for scale change. Vertical permeability should be also derived. 

Micromodeling stage starts with IHS digitization of bioturbated CIM and low resolution FMI. 
Since limited number of data is provided by TarCore, only one core image and one image log are selected 
for permeability modeling. Both image data represent different IHS intervals sampled from different 
wells. The CIM is digitized using global threshold. Local threshold is used for FMI digitization. Sand (0 or 
blue) and shale (1 or red) proportions are computed. Experimental variograms for horizontal (red) and 
vertical (blue) directions are derived from the CIM and FMI image data. Anisotropic variogram models are 
fit to both experimental variograms. Image analysis results are shown in Figure 3 for CIM and in Figure 4 
for FMI. By looking at the proportions and digitized images, it is argued that CIM image data represents 
muddy IHS, and FMI image data is a measurement of sandy IHS. Since digitized core image is 2D binary 
data, rotation or transposition of the image data is necessary to generate 3D data set. Previous studies 
have shown that transposition creates spatial artifacts, e.g. variogram is not reproduced, and excessive 
rotation of 2D planes makes important dipping direction smooth. Therefore, core image data is rotated 
only once to recreate 3D binary data (Figure 5). The SIS is used to generate 3D binary models from both 
CIM and FMI (Figure 5). The resolution of the data and model grids are tabulated in Table 3. Well bore 
diameter of 159.0 mm is assumed. 
 

Table 3: Model grid definition at various scales for CIM and FMI. CIM data resolution is 0.625 x 0.286 
mm2, and FMI data resolution is 2.080 x 2.500 mm2. 

 
Model Scale Image Model Resolution, mm Model Grid,  

# blocks Model Size, mm 

Pixel scale Core image 0.625 x 0.625 x 0.286 80 x 80 x 700 50.00   x  50.00   x 200.00 
Image log 2.080 x 2.080 x 2.500 78 x 78 x 375 162.24 x 162.24 x 937.50 

Micromodeling 
scale 

Core image 25.00 x 25.00 x 28.57 2 x 2 x 7   50.00 x    50.00 x 200.00 
Image log 27.04 x 27.04 x 37.50 6 x 6 x 25 162.24 x 162.24 x 937.50 

Core plug scale Core image 25.0 x 25.0 x 25.0 40 x 40 x 40 1000.0 x 1000.0 x 1000.0 
Image log 25.0 x 25.0 x 25.0 40 x 40 x 40 1000.0 x 1000.0 x 1000.0 

Minimodeling 
scale 

Core image 1000.0 x 1000.0 x 1000.0 1 x 1 x 1 1000.0 x 1000.0 x 1000.0 
Image log 1000.0 x 1000.0 x 1000.0 1 x 1 x 1 1000.0 x 1000.0 x 1000.0 

 
 Next step is the population of 3D binary models with representative statistics of clean sand and 
clean shale distribution parameters. If distribution of sand facies porosity and permeability is examined 
closer, a mixture of clean sand and contaminants can be distinguished due to sampling and measurement 
errors. Figure 6 contains typical histogram of corrected core porosity of sand facies in black. Such 
distribution can be viewed as combination of the normal distribution of clean sand in red and normal 
distribution of impurities and contaminants in green. Similar behavior is observed on normal probability 
plot (Figure 6). Straight red line represents normal distribution of clean pure sand with mean at 50% 
probability. 95% probability interval centered at the mean represents ± two standard deviations of the 
normal distribution. Thus, distribution parameters (mean and standard deviation) of clean sand unit are 
determined by drawing straight lines from 2.5%, 50%, and 97.5% probability values until they cross the 
red line, and picking appropriate porosity values (Figure 6, and Eqs. (1) and (2)). It happens that mean and 
standard deviation of clean sand porosity are 0.35 and 0.01, and 3.699 and 0.2 for horizontal permeability 
in log10 units. It is important to keep in mind that distribution of permeability is not normal in original 
units, but quite Gaussian in logarithmic units. Mean of Kver/Khor permeability ratio for IHS facies is 
assumed to be 0.8, estimate of which comes from the core data. Parameters of clean shale porosity and 
log10 permeability are assumed to be constant and equal to 0.01 and -2.0, respectively. 
 
[ ] %50== psequencesandE φφ  (1) 
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 In reality, however, permeability values in sandy parts of IHS do not always precisely follow 
distribution of clean sand permeability. Permeability of clean sand intervals within IHS facies also depends 
on local V-shale and is worse for higher shale content. Thus, permeability is corrected according to Eq. (3) 
to take into account influence of local V-shale. Permeability value at 25% of V-shale can be found from 
regression line on local core V-shale – horizontal permeability scatter plot (Figure 6). 
   

( ) ( )[ ])25.0(log)log(4)log()(log ,,,, =−⋅⋅−= shalesandhorsandcleanhorshalesandcleanhorshaleunitsandhor VKKVKVK  (3) 
 
 Populated with porosity and permeability values 3D binary models and associated histograms for 
CIM- and FMI-based results are shown in Figure 7 and Figure 8, respectively. Since binary models are 
different for CIM and FMI, resulting populated porosity and permeability models also differ from each 
other. The conceptual statistics of IHS facies is preserved, which are depicted on the histograms. Mean 
porosity and permeability are smaller for CIM-based model in comparison with FMI-based model. This is 
obvious outcome, since V-shale is higher for CIM, and less for FMI. Local V-shale values are found by 
smoothing sand-shale binary models within ~10.0 cm window interval in all directions. 
 Upscaling of petrophysical properties from pixel scale to micromodeling scale is the next step. 
Input and output grid parameters of models are listed in Table 3. Note that model volume does not 
change, only block sizes increase from pixel to micromodeling scale. Arithmetic average upscaling is used 
for porosity and V-shale attributes, and single-phase steady state flow-based upscaling is used for 
permeability. In flow-based upscaling, the total Darcy’s flow rate should be equal for upscaled and original 
models. This constrain is used to come up to effective permeability values. Upscaled results are shown in 
Figure 9 and Figure 10. Mean values of porosity and permeability are preserved during upscaling as it 
should be in accordance with dispersion variance theory. Histograms become smoother and less variable. 

Final step of micromodeling stage is the fitting of porosity-horizontal permeability relationship 
with stochastic regression model. Ideally, upscaled results from conditioning images would be merged 
together (separately several CIM and FMI) to have larger representative set of data. But only one CIM 
image and one FMI image are available for this study. Mean of the bivariate distribution and standard 
deviation of residuals, which are found by subtraction of porosity values from their local means, are 
modeled independently. Regression equation for the mean is shown in Eq. (4) (Deutsch, 2010). Residuals 
are assumed to follow normal distribution with homoscedastic characteristic. Polynomial equation of 
third order is selected to fit the standard deviation as shown in Eq. (5). Conditional variance of residuals 
ε(φ ) = log10(K*hor|φ ) – log10(Khor|φ ) is computed as a variance of values falling inside a window of 0.1 
size centered at specific porosity φ . The least squared error (LSE) optimization problem is solved to find 
regression coefficients for both models. The minimum value of sum of squared differences between 
model estimates and true values (data) is sought.  
 

( ) )0.1()(loglog /3
21min,10

*
10

ceaaKK horhor
φφφ ⋅−−⋅+⋅+=  (4) 
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where K*

hor is the estimate of horizontal permeability; Khor,min is the minimum horizontal 
permeability, or horizontal permeability of clean shale facies, which is 0.01 mD in our case; cφ  is the 
critical value of porosity, after which permeability does not change very much. In this case critical porosity 
equals to 0.30; a1 and a2 are the regression coefficients of mean porosity-horizontal permeability model; 
and b1, b2, b3, and b4 are the regression coefficients of residual variance model. 
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 The LSE optimization problem for derivation of regression coefficients may be defined as shown 
in Eq. (6). The resultant equations for regression coefficients of mean and residual standard deviation 
models are shown in Eqs. (7) – (9). 
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 where V is the variable of investigation; V* is its estimate; aj is the jth regression coefficient; m is 
the number of regression coefficients for specific model; and n is the number of data. 

Resulting linear regression models of porosity-horizontal permeability relationships with one and 
two standard deviation intervals are shown in Figure 11 for core photo and FMI. On average, regression 
models look alike for CIM and FMI, with larger uncertainty in FMI. This is reasonable result, since 
resolution of FMI is worse and smoothens important geological features. These regresion models are used 
as transformation functions in minimodeling stage. Regression coefficients are tabulated in Table 4. 
 Minimodeling stage consists of four main steps. First, N = 89 realizations of porosity is simulated 
unconditionally to the local data with variogram model from cleaned log porosity data. The shape of 
distribution is conditioned to the shape of cleaned log porosity data. The size of the models is chosen to 
be 1.0 m3 with a resolution of 2.5 cm3, which is about a core plug size (Table 3). Histograms of reference 
data and generated porosity are shown in Figure 12. A 3D view of single porosity realization and 
anisotropic porosity variogram model are presented on the same figure. Some lamination is observed in 
3D porosity model. Note that same resulting porosity realizations are used in next step for CIM- and FMI-
based permeability modeling. 

Second step is the co-simulation of horizontal permeability conditional to porosity models using 
porosity-horizontal permeability transform function from micromodeling stage and permeability spatial 
structure. The transformation table is obtained from regression models (4) and (5) by Monte Carlo 
simulation drawing. P-field simulation is used to co-simulate horizontal permeability. Probability field is 
generated by unconditional SGS with variogram model from cleaned log V-shale data that are deemed to 
be plausible substitute for spatial structure of horizontal permeability. Single realization of horizontal 
permeability model for CIM- and FMI-based approaches is shown in Figure 13 and Figure 14, respectively. 



Paper 210, CCG Annual Report 14, 2012 (© 2012) 

 210-9 

Lamination features of IHS facies are observed in the permeability models. These models honor porosity 
data and transformation functions from micromodeling stage. Mean of horizontal permeability of CIM-
based models is smaller than of FMI-based results due to higher shale content in conditioning CIM image, 
which is preserved through the transform function. 
 Third step is to upscale models from core plug scale to minimodeling scale. Model grid definition 
is shown in Table 3. Here, single realization of core plug scale model is upscaled to a minimodel that 
consists of a single block. The mean of Kver/Khor permeability ratio is assumed to be 0.8. Upscaling is 
carried out in a similar way to what is done at micromodeling stage: porosity is upscaled arithmetically, 
and tensor-based upscaling is used for permeability upscaling. Histograms of upscaled porosity and 
permeability are shown in Figure 15. Since porosity models used for the CIM and FMI-based modeling are 
the same, the upscaled results are unique as well. As expected, means of horizontal and vertical 
permeability are smaller for CIM than for FMI. Vertical permeability is less than horizontal permeability as 
defined in input parameters.  

The last step is to fit regression models to porosity-permeability and horizontal-vertical 
permeability relationships. The Khor – Kver/Khor model is just simply derived from the Kver – Khor regression 
model by dividing Kver to Khor values. Porosity-permeability regression model is similar to one used at the 
micromodeling stage (Eqs. (4) and (5)). Horizontal-vertical permeability relationship is fit slightly different 
– with second order polynomial function as shown in Eq. (10). Regression model for standard deviation of 
residuals are found similar to Eq. (5), and is expressed in Eq. (11). Again, the regression coefficients are 
derived by minimizing LSE (Eqs. (9) and (12)) and tabulated in Table 4. Obtained regression models for 
mean and ± one and two standard deviations for CIM- and FMI-based results are shown in Figure 16 with 
corrected core data. Note that permeability values with Kver/Khor permeability ratio R lower than 0.3 and 
higher than 1.0 are not used to constrain the regression model. These final regression models are used to 
simulate horizontal and vertical permeability values at reservoir scale conditional to porosity models 
derived from cleaned log data using co-simulation technique similar to one used in minimodeling stage (p-
field simulation).  

The reservoir scale modeling is not touched in this paper and is considered to be straightforward. 
 

[ ] [ ]2min,10102min,10101min,10
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10 )(log)(log)(log)(log)(log)(log horhorhorhorhorver KKcKKcRKK −⋅+−⋅+⋅=  (10) 
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Table 4: Regression model coefficients for porosity-horizontal permeability and horizontal-vertical 

permeability relationships fit at different modeling scales. Khor,min = 0.01 mD, and R = 0.8. 
 

Model 
Scale 

Image 
Data 

Porosity-Horizontal Permeability 
Regression Model Coefficients 

Horizontal Permeability-Vertical 
Permeability Regression Model 

Coefficients 

Micro-
modeling 
scale 

Core 
image 

a1 = 5.49, a2 = 3.69 
b1 = 0.24, b2 = -0.47, b3 = 1.41, b4 = -1.53 

- 

Image 
log 

a1 = 0.14, a2 = 5.26 
b1 = 0.74, b2 = -3.31, b3 = 8.30, b4 = -4.75 

- 

Mini-
modeling 
scale 

Core 
image 

a1 = 3.51, a2 = 4.26 
b1 = 0.16, b2 = 0.02, b3 = -0.09, b4 = 0.06 

c1 = 0.51, c2 = 0.10 
d1 = 0.16, d2 = 0.00, d3 = 0.00, d4 = 0.00 

Image 
log 

a1 = -2.62, a2 = 6.30 
b1 = 0.30, b2 = -0.25, b3 = 3.03, b4 = -7.25 

c1 = 0.79, c2 = 0.04 
d1 = 0.17, d2 = -0.01, d3 = 0.00, d4 = 0.00 
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Conclusions 
The multiscale workflow for by-facies porosity, horizontal and vertical permeability modeling has been 
presented with illustrative realistic case study. The methodology consists of three stages due to multiscale 
nature of the data. Multiscale data are used to support the models at various reservoir heterogeneity 
scales. The stages are micromodeling, minimodeling, and reservoir scale modeling. At micromodeling 
stage, core images and image logs condition models at pixel scale and enable to reproduce small scale 
variability of lithological facies in the models. Corrected core porosity data is used to populate binary 
models with representative statistics. It is found that both CIM and FMI lead to the similar results with 
higher uncertainty in image log-based models because of associated lower image data resolution. At the 
minimodeling stage, by-facies porosity-horizontal permeability regression models from previous stage are 
used along with cleaned log data to build porosity-horizontal permeability and horizontal-vertical 
permeability bivariate models at meter scale, which is about a block size of petroleum reservoir model 
used for flow simulation. Results from minimodeling are used to co-simulate insufficiently sampled 
permeability. Permeability models are conditioned to well-defined porosity models from cleaned log data. 
Variogram models of V-shale are used to characterize permeability spatial structure and are deemed to be 
fair substitute. Bivariate relationships are summarized by regression models in deterministic or stochastic 
fashion. Final porosity and permeability models are delivered at reservoir scale suitable for flow 
simulation. 

The methodology is deemed to be well-established with ability to deliver plausible and 
statistically sound results. The methodology is suitable for modeling of effective petrophysical properties 
of tidal influenced estuarine depositional systems in McMurray and other similar formations. It is able to 
debias core data and extrapolate missing lower tail of the distribution. 

As for the future work, following tasks are proposed: 
1- Derived by-facies porosity-permeability relationships may be validated by calibrating to 

production data or other observations. 
2- Exhaustively available FMI data can be used for local modeling of permeability along the 

wells. Such local approach has an advantage over described approach. There is no need to 
subdivide data into the facies. 

3- Influence of formation water and gas, and dipping directions on permeability modeling 
should be examined. 
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Figure 1: Typical core porosity-horizontal permeability data for laminated facies. It is believed that due to 
some factors, such as core dilation and preferential sampling, the data is biased and mostly represents 
good quality part of the facies. Therefore, the data should be corrected before integration into the 
geological model. 
 

 
 
Figure 2: High level flow chart of the by-facies porosity and permeability modeling 

 
Figure 3: Micromodeling steps 1, 2, and 3: core photo digitization of IHS facies (from TarCore lab handout) 

Data Analysis & Cleaning 

Micromodeling 

Minimodeling 

Reservoir scale modeling 

- Image data 
- Corrected core porosity and permeability data of sand facies 
- Corrected core porosity and permeability data of shale facies 
- Corrected core V-shale, permeability data of facies of interest 
 

- Cleaned log porosity and V-shale data of facies of interest 
- Corrected core permeability data of facies of interest 

- Cleaned log/core facies or electrofacies 
- Cleaned log porosity and V-shale data of all facies in the model 
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Figure 4: Micromodeling steps 1, 2, and 3: image log digitization of IHS facies (from TarCore lab handout) 
 

                                                  
 
    3D binary data and binary model from core photo      3D binary data and binary model from image log 
 
Figure 5: Micromodeling steps 4 and 5: building a binary sand-shale IHS model from 3D data 
 

 
 

Figure 6: Micromodeling step 6: choosing representative distribution parameters of clean sand porosity 
and horizontal permeability from corrected core data of sand facies. Schematic representation of the 
process is provided. 
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Figure 7: Micromodeling step 6: population of a 3D binary core image-based model with representative 
clean sand porosity and horizontal permeability values. The model grid consists of 80 x 80 x 700 blocks. 
The size of single regular block is 0.625 x 0.625 x 0.286 mm3 and is the same as CIM data resolution. 
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Figure 8: Micromodeling step 6: population of a 3D binary image log-based model with representative 
clean sand porosity and horizontal permeability values. The model grid consists of 78 x 78 x 375 blocks. 
The size of single regular block is 2.08 x 2.08 x 2.50 mm3 and is the same as FMI data resolution. 
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Figure 9: Micromodeling step 7: upscaling properties of populated core image-based model – arithmetic 
upscaling of porosity and local V-shale, and tensor-based flow upscaling of permeability. The upscaled 
model grid is 2 x 2 x 7, a block of which has size of 25.0 x 25.0 x 28.6 mm3. 
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Figure 10: Micromodeling step 7: upscaling properties of populated image log-based model – arithmetic 
upscaling of porosity and local V-shale, and tensor-based flow upscaling of permeability. The upscaled 
model grid is 6 x 6 x 25, a block of which has size of 27.04 x 27.04 x 37.5 mm3. 
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Figure 11: Micromodeling step 8: parametric regression fitting of porosity-horizontal permeability 
relationship at micromodeling scale of the core image- and image log-based models. FMI-based results 
have higher uncertainty due to lower resolution of the image and larger model size, thereof, more 
samples. 
 

 
 

Figure 12: Minimodeling step 1: porosity simulation at core plug scale. Cleaned log porosity data is used 
as a reference distribution and also to derive variogram model. Note the same porosity model of N = 89 
realizations is used for both core image- and image log-based modeling. The grid of core plug scale model 
is 40 x 40 x 40, and block size is 0.025 x 0.025 x 0.025 m3. Single realization is shown in 3D. The lamination 
of IHS structure is slightly reproduced in the 3D model, and could be improved by having real data. 
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Figure 13: Minimodeling step 2: p-field simulation of horizontal permeability at core plug scale for core 
image-based model. Bivariate relationship from micromodeling and log V-shale variogram are used in co-
simulation. The grid of core plug scale model is 40 x 40 x 40, and block size is 0.025 x 0.025 x 0.025 m3. 
Single realization is shown, and IHS lamination is reproduced. 

 
Figure 14: Minimodeling step 2: p-field simulation of horizontal permeability at core plug scale for image 
log-based model. Bivariate relationship from micromodeling and log V-shale variogram are used in co-
simulation. The grid of core plug scale model is 40 x 40 x 40, and block size is 0.025 x 0.025 x 0.025 m3. 
Single realization is shown, and IHS lamination is reproduced. 
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Figure 15: Minimodeling step 3: upscaling properties of populated core image- and image log-based 
models – arithmetic upscaling of effective porosity and tensor-based upscaling of permeability at 
minimodeling scale. The mini model grid is 1 x 1 x 1, block size of which is 1.0 x 1.0 x 1.0 m3. Eighty nine 
realizations are generated (N = 89). Permeability from FMI is higher than permeability from CIM due to 
higher shale content in the interval captured by FMI and its less ability to capture smaller scale 
heterogeneities. 
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Figure 16: Minimodeling step 4: parametric regression fitting at minimodeling scale of porosity-horizontal 
permeability and Khor-Kver relationships derived from the core image and image log data. The regression 
coefficients are stored in Table 4. Values with Kver/Khor ratio lower than 0.3 and higher than 1.0 are not 
used in the regression fitting. Fictitious core data is debiased by the proposed modeling approach. 


