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Micro-Modeling for Enhanced Porosity-Permeability Relationships 
 

Jeff Boisvert, John Manchuk, Chad Neufeld, Eric Niven and Clayton V. Deutsch 
 

Accurate modeling of vertical and horizontal permeability in oil sands is difficult due to the lack of 
representative permeability data. Core plug data could be used to model permeability through the 
inference of a porosity-permeability relationship. The drawbacks of this approach include (1) variability 
and uncertainty in the porosity-permeability scatter plot as a result of sparse sampling and (2) biased core 
plug data taken preferentially from sandy or homogeneous intervals. A two-step process can be used 
where core photographs and core plug data are used to assess small scale permeability followed by 
upscaling to a representative geomodeling cell size. This paper expands on a methodology that utilizes 
core photographs to infer porosity-permeability relationships. This methodology is robust because there is 
abundant core photograph data available compared to core plug permeability samples and the bias due to 
preferential sampling can be avoided.  The proposed methodology entails building micro-scale models with 
0.5 mm cells conditional to 5cm x 5cm sample images extracted from core photographs. The micro-models 
are sand/shale indicator models with realistic permeability values (ksand≈7000mD, kshale≈0.5mD). The 
spatial structure of the micro-model controls the resulting porosity-permeability relationships that are 
obtained from upscaling. Previously, these models were generated with sequential indicator simulation 
(SIS). However, SIS may not capture the spatial structure of the complex facies architecture observed in 
core photographs. Models based on multiple point statistics and object based techniques are proposed to 
enhance realism. Micro-models are upscaled to the scale of the log data (5 cm in this case) with a steady-
state flow simulation to determine the porosity-permeability relationship. The porosity-permeability 
relationships for geomodeling, or flow simulation, can be determined with subsequent mini-modeling and 
further upscaling. The resulting porosity-permeability relationship can be used to populate reservoir 
models and enhance traditional core data. Wells from the Nexen Inc. Long Lake Phase 1 site in the Alberta 
Athabasca oil sands region are used to demonstrate the methodology. 
 
Introduction 

The Alberta oil sands are a vast resource with proven reserves of 169.9 billion barrels 
(Government of Alberta, 2011). Although surface mining techniques have been used in the oil sands since 
the late 1960's and are still used today, the majority of reserves are too deep for mining to be economical. 
As a result, in-situ recovery methods are required. Since bitumen is more viscous than conventional oil, 
steam is often injected to raise the temperature of the bitumen, reducing its viscosity and allowing it to 
be pumped to surface. The most widely used in-situ recovery method in the oil sands is steam-assisted 
gravity drainage (SAGD). Engineers use flow simulation to make predictions of steam rise and oil and 
water drainage. A critical input parameter in the flow simulation of SAGD operations is vertical 
permeability. 

There are two main reservoir facies associations of concern in the McMurray. The first is the 
massive cross-stratified coarse sands with high porosity, permeability and oil saturation. This is the most 
desirable reservoir facies. The second facies association is inclined heterolithic stratification (IHS). These 
heterogeneous deposits form as a result of lateral growth of point bars within meandering channels of 
freshwater rivers and creeks draining inter-tidal mudflats. IHS deposits are generally decimeter to meter-
thick repetitive sets of inclined beds of sand and mud and can range in quality from mostly sandy to 
mostly muddy (Thomas et al., 1987). A third facies association, Breccia, is also found in small amounts 
near the base of a channel succession due to the erosion and collapse of previous muddy point bars. 

The geology of the McMurray formation has a large influence on its vertical permeability profile. 
Permeability is controlled by grain size, sorting and sediment type (Olson, Yaich and Holder, 2009; Shang 
and Wang, 2011). Vertical permeability is typically inversely related to the horizontal continuity of the 
sediments. For example, where horizontal continuity is low, there are flow paths around low permeability 
units. Where horizontal continuity is high, vertical permeability is decreased because there are few flow 
paths around the low-permeability units. 
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A number of issues make estimating permeability difficult. The scale of core plugs compared to 
the scale of geomodeling or flow simulation must be accounted for (Tran, 1996) as the vertical 
permeability at the whole core scale is what would be most important for SAGD. Preferential sampling of 
core is another issue. Core plug samples are often taken preferentially from the clean sand; otherwise, 
samples would have a high tendency to break or deteriorate prior to lab testing. This preferential 
sampling results in bias and an incomplete permeability to porosity relationship that is difficult to infer. 
Permeability inference is further confounded because core plug porosity and permeability data cannot be 
calibrated with well-test data because bitumen is immobile under in-situ temperature and pressure 
conditions. There are a number of common approaches to estimate permeability in oil sands: 

 
1. A constant horizontal and vertical permeability could be assigned within each facies. If the 

permeability variation within a single facies is small compared to the permeability variation between 
facies, this simplification could be acceptable. 

2. Regression models of the log of permeability versus porosity can be constructed for each 
facies. Then the log derived porosity data can be transformed to permeability within each facies. The main 
limitation of regression approaches is that they do not account for the uncertainty in permeability for a 
given porosity. 

3. A cloud transformation (Kolbjornsen and Abrahamson, 2004) technique could be used to 
attempt to account for the statistical variation in permeability. 

4. A p-field simulation technique (Deutsch, 2002) could be used where the values from a 
correlated random field are used in the Monte-Carlo simulation to draw permeability values. The 
realizations of permeability will then have the correct spatial variation. 

Although the aforementioned techniques are valid and useful, the overall estimation of vertical 
permeability can be improved by considering all available information. Core photographs or full-bore 
formation micro-images (FMIs) are one source of fine scale information. Facies and permeability can be 
assigned to the core photograph on a pixel-by-pixel basis. Individual pixels can be classified as either sand 
or shale. There is no mixing of facies to consider at this resolution. The micro-scale model can be upscaled 
to an effective porosity and permeability at the scale corresponding to the image size. The advantage of 
this methodology is that it considers all available data, permitting improved predictions of vertical 
permeability, while resolving the aforementioned scaling and non-representative sampling issues. 

This paper presents a methodology to use the 2D core photographs to calculate 3D geostatistical 
models of porosity and permeability for each facies at the scale of the image pixels. The micro-models are 
upscaled using flow simulation to calculate an effective vertical and horizontal permeability at a 5 cm 
scale. The methodology is applied to wells located in the Nexen, Inc. Long Lake Phase 1 Site. 

 
Methodology  

The goal of this work is to determine upscaled porosity (ϕ)-horizontal permeability (kh) and kh-
vertical permeability (kv) relationships that can be used in a cloud transformation for inference of 
reservoir properties for flow simulation. The upscaled ϕ-kh and kh- kv relationships for a particular facies 
are inferred by analyzing core photographs. The main idea is to generate a 3D model of permeability at a 
scale where the model cell size is such that each cell can be assumed entirely sand or entirely shale which 
simplifies permeability assignment. In this work, the models are built at the approximate resolution of the 
core photographs (0.5mm x 0.5mm x 0.5mm blocks).  This resolution is used to capture the small scale 
variations in sand/shale; clearly, the size of the sand grains would make the actual flow properties of such 
a small volume difficult to infer. 

The core photograph provides the necessary data for assignment of sand and shale in a 3D 
indicator micro-model. A distribution of permeability is assumed within the sand and shale categories. 
Flow simulation is used to determine an upscaled porosity-permeability relationship for the sand/shale 
mixture. Deutsch (2010) provides a detailed methodology for generating upscaled porosity-permeability 
relationships from core photographs or FMI data and the methodology is summarized in this section. This 
work considers core photographs but these techniques could be extended to consider FMI data. The 
methodology: 

1. Digitize the core photograph and select a cutoff value 
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2. Infer a 3D model of permeability with SIS followed by SGS  
3. Flow simulation to determine the upscaled permeability 
4. Repeat for multiple core photographs 
The main driver of flow is the sand/shale spatial arrangement. The goal of this work is to improve 

upon the generation of the sand/shale indicator models to better capture the flow behavior of different 
facies. In past work, a variogram was automatically inferred from the 2D core photograph and SIS was 
used to generate a 3D indicator model. The appropriateness of using SIS to generate the indicator models 
depends on the facies considered; the focus here is specific to the McMurray Formation and the facies 
present can be broadly classified as sand, IHS and breccia. Techniques specific to each facies type are 
explored. 

Details of the standard micro-modeling methodology are expanded upon below. 
 

Step 1: Digitize the core photograph 
The locations of the extracted models are manually selected from the core photographs (Figure 

1). A representative range of core photograph samples should be selected such that the range of porosity 
values in the log data are represented in the micro-models. This is accomplished by selecting models with 
various proportions of shale. The images are 5cm by 5cm with 100 cells in each direction. It is more 
convenient to work in pixels and models are shown to be 100 x 100 with 0.5mm blocks throughout. Gray 
scale cutoff values are selected to assign sand and shale categories. The appropriate cutoff value for a 
model varies for each photograph because of local lighting conditions, water saturations, etc. For each 
model this cutoff value is selected by examining a range of cutoffs and determining the most visually 
appropriate value (Figure 1). The cutoff value is a key parameter as it controls the spatial distribution of 
categories. 

 
Step 2: Infer the 3D permeability model 

The result of Step 1 is a 2D indicator model of sand and shale. While this model could be used in 
a 2D flow simulation, the three dimensional characteristics of flow would not be captured. SIS is typically 
used to generate the 3D categorical model and requires a variogram model. The conditioning data, in the 
form of a 2D model of sand/shale, provides the necessary data for inference of the vertical and horizontal 
variograms (Figure 2). The continuity in the second horizontal direction (into the page in Figure 1) is 
assumed to be the same as the horizontal direction in the core photograph. The validity of this 
assumption is the focus of the first part of this work and is discussed further below. 

SIS is implemented with the variogram model and the conditioning data provided by the core 
photograph (Figure 3). Ten realizations of sand/shale are generated to assess the uncertainty in the 
upscaled results. The number of realizations could be increased; however, multiple core photographs are 
considered for each facies and the large number of flow simulations quickly becomes CPU demanding.  

Flow simulation requires a model of permeability. SGS is used to populate the categorical models 
with realistic permeability values. Due to the small scale of the individual cells in this model and the 
assumption that each cell is either entirely sand or entirely shale, a kv/kh ratio of ~1.0 is reasonable. The 
permeability distribution for sand is assumed to approximately match the core samples taken in sand 
N(7000 mD, 2500 mD). There are no core samples taken in shale; a realistic distribution of N(0.5 mD, 0.1 
mD) is assumed. Adjusting these distributions has an effect on the upscaled porosity-permeability 
relationships and is roughly calibrated to existing core samples and previous experience with similar 
deposits. 

 
Step 3: Flow simulation to determine upscaled permeability 

A steady state flow simulation using FLOWSIM provides the upscaled kv and kh values for each 
3D micro-model; however, there is no porosity value for each model and it must be inferred. It would be 
inappropriate to use log porosity data as the volume of influence is much larger than the 5cm x 5cm 
models considered. The porosity for shale is assumed to be 1% and sand is assumed to be 40%; the 
proportion weighted average (Equation 1) provides the porosity for each realization.  Equation 1 is a good 
approximation for porosity but assumes perfectly clean sand without interstitial clays and could be 
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modified given site specific considerations. Equation 1 is a good approximation for porosity but assumes 
perfectly clean sand without interstitial clays and could be modified given site specific considerations. 

φrealization = 0.4 (psand) + 0.01 (pshale) (1) 
 

Case Study 
The methodology as presented above relies on SIS for the generation of the sand/shale 

categories within each facies modeled. In this section, modeling considerations specific to the sand/shale 
geometry of each facies are incorporated into micro-modeling. Core photographs, core samples and log 
data from 12 wells in the Long Lake Phase 1 project in the Athabasca oil sands region of Alberta, Canada 
are used to demonstrate the methodology. There are three identified facies of interest: sand, IHS and 
breccia (Figure 4). Based on log data, the proportions of facies in the reservoir are 60% sand, 29% IHS and 
11% Breccia.  

The core data is not used explicitly for calibration nor in selecting micro-model locations as it is 
not typically representative of in-situ reservoir properties (i.e. porosity) due to the difficulty of sampling 
high shale proportions. This issue is highlighted in Table 1 where the average porosity (and even 
permeability) of IHS and Breccia are similar to the samples in sand. Core data alone cannot provide 
sufficient information to fully infer the relationship between porosity and permeability. 

 
Table 1: Available data. 

Facies Core 
Samples 

Average Horizontal 
K (arithmetic) 

Average 
Vertical K 

(arithmetic) 

Average 
Porosity 

Number of Core 
Photograph 

models 
Sand 66 6622 5669 0.35 100 
IHS 34 5479 5115 0.33 99 

Breccia 31 7696 7123 0.36 99 
Total 131 6405 5668 0.34 297 

 
Modeling IHS 

The layered nature of IHS results in thin sand beds that are the main conduit of flow at the scale 
considered. The geometric orientation of these layers can affect upscaled kv and kh. Literature suggests 
that the typical dip of IHS sets in the McMurray formation can range from 8˚-15˚ degrees with minimums 
and maximums observed between 3˚-30˚ (Mossop and Flach, 1983; Smith, 1987; Crerar 2007); however, 
the distribution of dips as measured by the automatic variogram fitting is much smaller because the 
apparent dip, not the true dip, is measured. As the true dip increases, kh decreases and kv increases. It is 
important to fully understand what effect a larger true dip has on the permeability relationships inferred. 
In this section, numerical experiments are conducted to assess the sensitivity of flow properties to the 
unknown true dip. It should be noted that in the presence of FMI data this is less of a concern as FMI 
provides 360˚ coverage of the borehole wall that can be used to infer the true dip of the IHS set (Strobl et 
al. 2009). 

 
The impact of dip on the ϕ-kh-kv relationships is assessed by assuming a range of true dips. First, 

consider the apparent dip to be the true dip. The variogram from the 2D core photograph is fit 
automatically and the dip determined (Figure 5 right). This variogram is used with SIS to generate 
sand/shale models and results in the relationships shown in Figure 6. Of interest to modeling is the actual 
ϕ-kv and ϕ-kh relationships and how they are affected when the true dip is not measured.  

The true dip is assumed to be 5˚, 10˚, 15˚ and 20˚ and the relationships (Figure 6) are 
recalculated. A corrected variogram (Figure 5 right) is calculated by determining the strike relative to the 
core photograph orientation (Equation 2) where the apparent and true dips are known. The corrected 
variogram is used in SIS and the methodology repeated for each core photograph. Rather than repeat all 
plots (Figure 6) for each true dip considered, the relationships are fit and compared (Figure 7). For high 
porosity values, the difference when considering the true dip is small. However for porosity values that 
are common in the McMurray formation there are significant differences in the modeled horizontal and 
vertical permeability values when considering the true dip. Higher porosity models are less affected 
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because there is less connectivity of the small proportions of shale and the orientations of these 
disconnected features are not as relevant to the flow response of the model. 
 sin (𝑠𝑡𝑟𝑖𝑘𝑒) = tan (𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑑𝑖𝑝)

tan (𝑡𝑟𝑢𝑒 𝑑𝑖𝑝)
 (2) 

If FMI data is available, an attempt should be made at inferring the distribution of true dips in the 
layer considered and the variogram for each SIS realization altered to consider uncertainty in the true dip. 
 
Modeling Breccia 
SIS effectively models the linear spatial orientation of sand/shale in the IHS and sand facies. Typically 
breccia is observed to have large clasts with some variation in size (Figure 8). If SIS is used to model 
breccia, the resulting sand/shale realizations are not consistent with the known breccia geometry (Figure 
8) resulting in an inaccurate flow response assessment. 

Multiple point statistics are used to generate realizations that better honor breccia geometry. 
First a library of TI’s that represent different geometries and shale proportions is generated. TI’s are 
created using a randomized object based modeling algorithm. Objects are breccia clasts that are randomly 
seeded throughout the micro-model. The geometry of the clasts is randomly grown until the model has 
the correct fraction of shale. Clasts are grown according to anisotropy and volume statistics that are 
derived from core photographs of breccia facies so that the models reflect the observed geometry. 
Generated clasts can be convex and nearly elliptic shaped to highly non-linear non-convex shaped by 
allowing growth to occur from the original seed point or by allowing the seed point to move using a 
random walk process.  

Consider the 2D indicator model shown in Figure 8. To select the most appropriate TI for this set 
of conditioning data, the distribution of runs (Mood, 1940) for the conditioning data is compared to the 
distribution of runs of each TI in the library with similar proportions. The TI most similar to the 
conditioning data in a minimum squared error sense, is used in SNESIM (Strebelle 2000) to generate the 
categorical models for Breccia (Boisvert, Pyrcz and Deutsch, 2007). 

 
Results 

The bivariate relationships provided by micro-modeling are largely consistent with the core 
samples available (Figure 9). In general, the horizontal continuity due to the layered shale significantly 
reduces vertical permeability as indicated by the micro-modeling results. A new contribution to the micro-
modeling workflow made in this work is accounting for the lack of orientation data from the core 
photographs. This source of uncertainty is quantified by assuming the dip observed in the photographs of 
IHS facies is an apparent dip. Introducing variability in the true dip of the micro-models provides a more 
complete understanding of the variability in ϕ, kh, and kv. The effects can be significant. Consider Figure 
7: the vertical permeability for a porosity of 20% is roughly an order of magnitude higher for a true dip of 
20 degrees than for the apparent dip. This would lead to large differences in flow performance prediction. 

The focus of this work is establishing the micro-model scale ϕ-kh and ϕ-kv relationships. 
Normally, these relationships are then used in mini-modeling to obtain the porosity-permeability 
relationships at the scale of geomodeling or flow simulation. Mini-modeling is not considered in this work 
due to space constraints. It is recommended that unconditional realizations of porosity at the 
geomodeling scale of interest (usually ~1m x 1m x 1m with ~10cm blocks) be generated. Using a cloud 
transformation and the micro-modeling relationships developed, 3D realizations of permeability can be 
generated and upscaled. This provides the ϕ-kh-kv relationship at a geomodeling scale.  Deutsch (2010) 
provides additional details on mini-modeling. 
 
Conclusions 

Integrating the micro-modeling methodology into a typical reservoir characterization workflow 
takes advantage of the large number of core photographs available. Beyond core photographs and FMI 
data there is little information available for the ϕ-kh-kv inference; biased core samples cannot be relied 
upon to obtain a reasonable understanding of the geocellular modeling scale relationship for all porosity 
ranges. The small scale spatial arrangement of sand and shale dominates the overall behavior of each 
facies and can be incorporated in micro-modeling. The techniques presented generate and assess the 
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reasonableness of micro-models for better inference of porosity-permeability relationships, which is a 
critical and data-poor aspect of any reservoir modeling work flow.  
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Figure 1: Above: Gray scale image and indicator variogram using the appropriate cutoff. Below Left: Cutoff 
selected is too low. Below Right: Cutoff selected is too high. Below Center: Appropriate cutoff value. 
 

 
Figure 2: Vertical (black), horizontal (red) and 45° dip (blue) modeled variograms for the data in Figure 1. 
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Figure 3: Sand (black) and shale (white) conditioning data from a core photograph for one micro-model.  
 

 

 

 
Figure 4: Core photograph exemplars for the facies modeled. Above: Sand. Middle: IHS. Below: Breccia. 

 

  
apparent dip=6° strike = 0° 

 
𝛾(ℎ) = 0.68𝑠𝑝ℎ 𝑎6°=5.5

𝑎96°=2.0
+ 0.32𝑠𝑝ℎ𝑎6°=373

𝑎96°=5.9
 

 
 

true dip=20° strike = 17° 
 

𝛾(ℎ) = 0.68𝑠𝑝ℎ 𝑎20°=5.5
𝑎110°=2.0

+ 0.32𝑠𝑝ℎ𝑎20°=373
𝑎110°=5.9

 

 
 

Figure 5: Left: Conditioning data showing strike of 17° assuming a true dip of 20°. Right: automatic 
variogram fitting dip=6°. Variogram is isotropic in both horizontal directions. 

       
Figure 6: Relationships of interest for IHS using the apparent dip. 



Paper 211, CCG Annual Report 14, 2012 (© 2012) 

 211-9 

 
Figure 7: ϕ-kh and ϕ-kv relationships for different true dip in IHS facies. 
 
 

  
Figure 8: From Left: 2D Breccia model from the core photograph. One slice of an SIS relization of breccia. 
Slice from the TI used in SNESIM. SNESIM realization slice. 
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Figure 9: Summary relationships. 
 
 
 
 


