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CalculaƟng the Base of Net Bitumen for SAGD Reservoir Developement

Saina Lajevardi, and Clayton V. Deutsch

Themost common geostaƟsƟcal approach to well placement in steam-assisted gravity drainage (SAGD) is three
dimensional (3-D) modeling of the reservoir. This study makes use of one dimensional well log data or columns
from a geomodel to calculate the locaƟon of the producƟon well. Achieving a high probability of good recovery
and resource uƟlizaƟon are the main aims of the placement. InformaƟon provided by well log data is used to
predict the lateral extent of the barriers in order to understand their influence on the drainage recovery process.
This work uƟlizes Monte Carlo simulaƟon to quanƟfy the probability that a verƟcal thickness of a non-net is in
fact a horizontal barrier. Most of the uncertainty in predicted oil-in-place results from the inherent uncertainty
in the barrier size (non-net connecƟvity). Based on the understanding of the barrier extension, the well locaƟon
is calculated to maximize recovery and resource uƟlizaƟon.

Background
Steam-assisted gravity drainage was originally proposed by Roger Butler in 1978 and soon aŌer has been
commercialized by the oil sands industry. The technology has resulted in a 40-fold increase in Alberta bitumen
reserves esƟmate (McLennan et al., 2006). The reservoirs considered in this work for recovery assessment are
the so-called ``good" reservoirs, containing 70-80% net-to-gross (NTG) raƟos (e.g. McMurray formaƟon which
contains 140 billion cubic meters oil sands, which accounts for 20% of the oil reserves in Canada) (McLennan
and Deutsch, 2003). In SAGD, the final recovery highly depends on the spaƟal distribuƟon of the reservoir
heterogeneiƟes, as well as the verƟcal and horizontal well-placement. This necessitates detailed informaƟon of
the reservoir which carries uncertainty due to the small scale of some heterogeneity. During the past decades,
much work has been done on 3-D modeling of reservoirs, with the aim of achieving opƟmal well placement in
SAGD.

Well-placement and planning is a crucial decision-making process; the most common pracƟce is goes-
taƟsƟcal 3-D modeling of the region before reservoir assessment is made. The 3-D modeling contributes by
transferring the present (geological) uncertainty into the model. Methods have been developed to explain
the geological distribuƟon. However, most of these methods are computaƟonally intensive as they consider
numerous data with large amounts of variaƟons (such as comprehensive flow simulaƟons (Ballin et al., 1992)).
In contrast, our approach in this work is to understand the uncertainty through one-dimensional data (e.g.
based on a single set of well log data). Although the analysis is more computaƟonally effecƟve, it does not
remove uncertainƟes due to limited knowledge. One strategy of 1-D analysis is to uƟlize correlaƟons such as
those between the thickness and the areal extension of the barriers to beƩer assess the spaƟal distribuƟon.

The ulƟmate goal in any reservoir study is tomaximize economic recovery. The net-to-gross raƟo in the
reservoir is just one parameter for recovery determinaƟon; there are other characterisƟcs that can significantly
influence the final recovery. The conƟnuity of the barriers, their posiƟons, orientaƟons, tortuosity, and verƟcal
depths (from the surface of the reservoir) can strongly affect the flow rate, well placement and recovery. To
consider each one of these properƟes in recovery analysis will quickly result in computaƟonal complexiƟes
that are unmanageable. With limited knowledge, parameters such as tortuosity would not be provided in
the one dimensional well-data. Reservoir management and recovery quanƟficaƟon are sƟll reasonable even
though some parameters are simplified. In this paper, we first outline the 1-D methodology using a Monte
Carlo technique. We will then apply this simplified approach to a case involving two barriers of known depths
and thicknesses. The lateral extents (Hb) and posiƟons (lc) of these barriers are, however, allowed to have
staƟsƟcal variaƟons. The uncertainƟes in Hb and lc will be incorporated into the final esƟmaƟon of oil recovery
-- a quanƟty that we will call the staƟsƟcally-averaged recovery. Later, the variaƟons of recovery at different
locaƟons will be evaluated and decision-making under uncertainty will be discussed.

One-Dimensional Analysis
This analysis is for esƟmaƟng the expected recovery from a reservoir based only on limited knowledge of
the depths and the thicknesses of barriers at one specific locaƟon (e.g. data from a single borehole). In
this approach, the recovery esƟmaƟon is carried out by assuming a simplisƟc view that the barriers can have
random lateral extent as shown in Figure 1. We will assume that barriers that exist at any depth will have a
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finite probability of being detected by the borehole. The probability of detecƟon will depend on the lateral
posiƟon lc and lateral extent Hb of the barriers, both of which are treated here as random variables. The other
two variables associated with the barriers, namely the depth z and the thickness t, are assumed known with
no staƟsƟcal variaƟons.

To determine recovery, we will assume that a producƟon well placed at a given depth is capable of
recovering the oil above it, except for the volume that is situated directly above the barrier. We also assume
that the oil is distributed evenly over the net region, and so the recovery could be represented by the volume
of the net region that is accessible to the producƟon well (i.e. region that is not blocked by barriers). We will
denote recovery by the symbol R, and since R is represented by a volume, it will have units of m3. According to
these assumpƟons, a typical plot of the recovery R versus the well depth z will appear as in Figure 2 which also
shows the corresponding 1-D representaƟon of the model region.

Clearly, well placement should be made at a depth that corresponds to maximum recovery R. Note
that as the producƟon well depth reaches a level which coincides with the top of a barrier, there will be a
sudden decrease in producƟon as oil drainage will be blocked, thus leading to a ``step back" as shown. The
magnitude of this ``step back" will be determined by the average size of the barrier which, in a staƟsƟcal sense,
is equivalent to the probability of the barrier (as will be explained later). Because of the ``step backs," the point
of maximum R is not necessarily at the boƩom of the model. Such case is depicted in Figure 2.

The R vs z plot can be understood as follows: StarƟng from the top of the reservoir (at z = 0), the
recovery increases linearly with the well depth. This is because we have implicitly assumed a constant model
cross secƟonal area that is given by Hm. As such, the volume accessible to the producƟon well would just be
proporƟonal to the depth. This conƟnues unƟl the well reaches the top surface of a barrier, at which point the
accessible volume decreases abruptly because the oil above the barrier can no longer be recovered by gravity
drainage. The amount of this ``step back" to the leŌ depends on the areal extension of the barrier. To keep the
scheme simple, the amount of recovery stays unchanged from the top of the barrier to the boƩom, assuming
no producƟon well would be placed over the extent of the barrier thickness. As the producƟon well clears the
boƩom of the barrier, the recovery will again go up linearly, with the slope being inversely proporƟonal to the
corresponding cross secƟonal area. This process conƟnues unƟl the boƩom of the model is reached.

We nowneed to evaluate the amount of ``step back," which reflects the amount of inaccessible oil due
to the size of the barrier. As explained earlier, this barrier size is more properly interpreted as a probability of
occurrence of a barrier. This probability is calculated as follows: As shown in Figure 3, a barrier is characterized
by its thickness t, lateral extend Hb, and the lateral posiƟon of its centroid lc (measured from the leŌ).

The variables t and Hb are correlated as shown in Figure 4. As can be seen, the correlaƟon is a linear
line given by the relaƟon yfit = 40x+10whichminimizes

∑
(y-yfit)2, where

∑
∆y = 0. Every lateral extension

Hb is assumed to have a normal distribuƟon around its mean (m = yfit). Note that any relaƟonship can be used.
We tried this relaƟonship from some training image experienced. A relaƟonship which can capture the non-
linearity structure could be more effecƟve in final evaluaƟon of recovery. The standard deviaƟon for every
barrier (∆yi) is

σ =

√
(yi2 -∆y2)/(N - 1),

which is about 30 for this parƟcular data. The quanƟty Hb is treated here as a Gaussian random variable with
mean value m and standard deviaƟon σ.

The lateral posiƟon lc is another random variable that we assume here to be uniformly distributed, i.e.
it is equally likely to take on any value between 0 and Hm. Next, we determine the probability of occurrence
of a barrier. A barrier ``occurs" if it crosses the centreline of the model and is detected by the borehole. This
(indicator = 1) will happen if 

lc ≤ Hm/2 and lc + Hb/2 ≥ Hm/2 or,

lc > Hm/2 and lc - Hb/2 < Hm/2.

The probability of occurrence is calculated using a Monte Carlo approach: A number of random trials (10,000
trials) were drawn for Hb, which followed a Gaussian distribuƟon, and lc, which was uniformly distributed. For
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Table 1: Depth data for Figure 5.

Barrier Depth Barrier Thickness
9 3

17.5 4.2
33.5 5

every trial, the above ``occurrence relaƟons" were invoked to determine if the barrier was intercepted by the
borehole. The final probability Pb was simply the raƟo of the number of detecƟons to the total number of trials,
i.e.

Pb =
number of detecƟons

10, 000
.

The Pb evaluated as such can be interpreted as the fracƟonal occupancy of the barrier within the model -- in a
staƟsƟcal sense, i.e.

Pb =
< Hb >
Hm

,

where < Hb > is the average lateral size of the barrier. Finally, the magnitudes of the step-backs in Figure 2 are
given by

step back ≡< Hb > ∆z

where∆z is the verƟcal gap width between the present barrier and the one above it.

Examples on One-Dimensional Analysis
As a result of uncertainty in the lateral size and posiƟon of barriers, the evaluaƟon of recovery is not unique.
Based on the configuraƟon of barriers and their thicknesses, theremight be caseswhere themaximum recovery
happens at different locaƟon so the producƟon well would likely be placed at a depth that corresponds to
maximum recovery R. However, due to different ``step backs," the opƟmal well placement would vary from
case to case. This behavior is shown in Figure 5 that clearly demonstrates a scenario where the maximum
recovery happens at the top of the third barrier in one case while it is maximum at the boƩom of the model
for the other case. In this scenario, the verƟcal extent of the model is Vm = 40m, and the horizontal length is
Hm = 700m (not realisƟc). There are three barriers in the reservoir (i.e. nb = 3), with their depth and thickness
informaƟon listed in table 1. Figure 5 is generated using EXPECTEDRECOVRY program implemented for this
purpose in GSLIB. Details on the calculaƟon of expected recovery had been provided earlier. For the scenario
that is ploƩed in red, the opƟmal well-placement is at the depth of 34 m while for the scenario in black, the
opƟmal well-placement is at the depth of 40 m. Figure 6 demonstrates the calculated staƟsƟcally-averaged
recovery versus the depth which is give in table 4. As can be seen, the maximum recovery is at the top of the
second barrier. That locaƟon is chosen as the opƟmal well-placement. However, this is not the case for all
barriers' configuraƟon as shown in Figure 5.

In this work, a one-dimensional Monte Carlo approach is used to evaluate the expected recovery from
an oil sands deposit using the SAGD technique. The central parameter to this analysis is the probability of a
barrier, which can also be viewed as the staƟsƟcally-averaged occupancy < Hb > of the model by a barrier. Such
a parameter is needed to determine the ``step-backs" in Figure 6. The parameter < Hb > in turn depends on
two random variables, Hb and lc, which are the lateral size and posiƟon of a barrier, respecƟvely. As both these
random variables are considered to be symmetrically distributed about their mean values, it should perhaps
not be surprising that the staƟsƟcally-averaged occupancy < Hb > is just the mean of Hb, which is given by
its linear regression with the barrier thickness t. This was indeed verified by comparing our value m (mean
of the Gaussian distribuƟon) to the Monte Carlo result based on 10,000 trials. It should also be noted that
the parameter < Hb > is completely independent of the standard deviaƟon of the Gaussian distribuƟon (as
expected). It seems therefore pointless to take the Monte Carlo approach in this work. However, in cases
where the random variables Hb and lc are not symmetrically distributed about their means, the Monte Carlo
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Table 2: Recovery staƟsƟcs.

Barrier Depth Expected Recovery Standard DeviaƟon for Recovery
4.80 358.913 1.086
12.00 605.339 90.717
15.00 551.532 202.218

analysis is important. Moreover, Monte Carlo analysis is required to transfer geologic uncertainty through to
recovery uncertainty.

QuanƟfying Uncertainty on Recovery EsƟmaƟon
In the last secƟon, Monte Carlo simulaƟon was applied to evaluate the recovery, accounƟng for all possibiliƟes
of the barriers' lateral extension and posiƟon. The amount of oil recovery has been associated to the recovery
well placements -- the possible recovery posiƟons are the ones above every detected barrier. Based on this
process, one could get reasonable understanding of the recovery performance at different locaƟons in the
reservoir model. However, what is missing in the reported results is how much the recovery esƟmate could
fluctuate about its mean. Note that the esƟmated recovery associated with a locaƟon for well placement is the
expected value of the esƟmate, which is not a determinisƟc recovery that could be achieved at any condiƟon.
Our knowledge of what actually exists in the reservoir is quite limited. A more correct way of represenƟng the
esƟmated results is to report them with their corresponding variaƟons.

Confidence intervals of the esƟmated values reflect the variaƟon of the esƟmaƟon about its mean.
RepresenƟng every esƟmate with its corresponding variaƟon is more effecƟve and reliable decision making
to consider the risk associated with an esƟmate. In an applied case, it is more appropriate to make decision
based on possibiliƟes rather than a single mean value; see Figure 7. Note that the uncertainty on the esƟmate
increases as one goes deeper in the reservoir. The target locaƟons for recovery in this work are above the
barriers since the only data available is the barrier posiƟons. The one-dimensional analysis discussed above
transfers uncertainty in barrier distribuƟon to uncertainty in recovery assessment. Basically, the uncertainty
grows as the number of barriers increases in the area. Also, it is noteworthy to recall that the confidence
interval is especially important for cases with less data available, as in our one-dimensional problem. Here, the
variaƟon of esƟmaƟon represents one standard deviaƟon around the mean.

RepresenƟng the variaƟon around the esƟmated recovery helps one to get an overall picture of the
reservoir before making decision, on well-placement. A single value for available resources at a parƟcular
locaƟon might suggest posiƟon A for well-placement, while the confidence interval for locaƟon B might offer
larger recovery values at some other points. The challenge is to opƟmize the resource uƟlizaƟon and economic
recovery simultaneously. However, profit typically is defined differently for different usages. One would allow
for more risk on resource uƟlizaƟon for example and go for 90% variaƟon about the mean to maximize the
economic recovery. Different well placements at different locaƟons account for different amount of variaƟon
in the esƟmated original oil-in-place. In general, the enƟre recovery process is a trade off: (1) placing the
well too high result in loss of resources while it improves the probability of connecƟons and (2) placing the
well too low recovers more while it has to deal with more uncertainty regarding the net connecƟvity above
the producƟon well. The present study on recovery assessment and well placement is however, independent
of details of profit calculaƟons. Examples are provided in the following secƟon to evaluate the cost resulƟng
from overesƟmaƟon and underesƟmaƟon. In this study, a simple, general form of loss funcƟon (asymmetric
absolute loss funcƟon) shown in Figure 8 is considered. The loss funcƟon determines the cost related to
different decisions for well-placement. The objecƟve is to minimize the cost which is equivalent to the opƟmal
decision given the uncertainty space. The asymmetric property accounts for different cost for two cases of
overesƟmaƟon and underesƟmaƟon. For example, in recovery, overesƟmaƟon corresponds to the case where
the realized recovery is less than expected, while underesƟmaƟon corresponds to the case where the recovery
is greater than the expected value. This would possibly mean that the opƟmal decision could have advantaged
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from more acceleraƟng producƟon or correctly sizing the required faciliƟes.

L(ÔIP, OIP) = |ÔIP - OIP|

ÔIPopƟmal = argmin L(ÔIP, OIP)

Note that in this study, we have imperfect knowledge on barrier distribuƟons; in the recovery process and the
overall original oil in place (OOIP) is not accessible. However, since we cannot evaluate the loss due to the well
design and flow properƟes, recovery in our case is a fracƟon of OOIP which is the same for all locaƟons.

Several programs have been developed throughout this study. The one considering the variaƟons in
recovery (OOIP) evaluaƟon is called RecoveryVariance (see appendix). Its parameter file asks for the angles
of slops corresponding to the overesƟmaƟon and underesƟmaƟon. A. G. Journel in (App) has proved that
in case of asymmetric loss funcƟon, the minimum cost occurs at the p-quanƟle λsmall/(λsmall + λbig) of the
producƟon distribuƟon. Having said that, aŌer the user idenƟfies the loss funcƟon, program will sort the
recovery values and approximately look for the recovery corresponding to the quanƟle which minimizes the
loss funcƟon. The user would decide on the well-placement based on the occurring maximum recovery at the
opƟmal quanƟle (Deutsch, 1998) (see appendix).

Examples on Recovery with VariaƟons
We know that the uncertainty increases as the reservoir gets deeper. The esƟmated recovery at the

locaƟon above the deepest barrier in the model has the largest uncertainty; the most variaƟon in esƟmaƟon
corresponds to the deepest locaƟon which inherits the uncertainty from all barriers above it. Similarly, the
largest recovery value most likely occurs at the point furthest to the right of the lowest recovery locaƟon;
see Figure 7. However, the opƟmal recovery is not guaranteed since this locaƟon might end up giving the
low recovery. The decisions made are dependent on the company's policy on risk-taking which will make a
difference in recovery and well placement. The judgment of a specialist is required.

In one experiment, we assumed having two barriers at depths of 4.8 and 12 m with thickness of 1.7
and 1.3 m, respecƟvely. Note that as before, the model is 15 m thick. AŌer applying Monte Carlo for each
case individually (10,000 in total) and evaluaƟng the expected mean of recovery with the associaƟng standard
deviaƟon gives the result in Table 2. As can be seen from the table, the expected recovery at top of the second
barrier is larger than the expected recovery at the boƩom. However, as anƟcipated, the uncertainty at the
lowest recovery posiƟon is larger, meaning that there is also a possibility that locaƟng recovery wells at this
posiƟon will result in a recovery of about 551 + 202 ≃ 753 m3, while the recovery at the top of the second
barrier might lead to a recovery of 605 -90 ≃ 515m3. Therefore, the evaluaƟon of confidence intervals enables
us to reasonably consider different possibiliƟes. However, there would be also cases which decision making is
much simpler. All evaluaƟons may turn out to be in favor of well placement at a specific locaƟon. In such as
case, decision making will of course be easier, even if the esƟmates are not always accurate -- as long as the
esƟmates do not represent overlap, they would be less problemaƟc.

Now, consider a case where barriers are distributed in a way that (2.5m thick located at 4.8m depth,
and 1.0m thick located at 10.0mdepth) the reservoir assessment and recovery evaluaƟon suggest a maximum
expected recovery at the boƩom of the model; see Table 3. Although we expect a larger uncertainty on this
value compared to the higher recovery locaƟons, the recovery at two locaƟons considering their variances
represent no overlap. In the best case scenario, maximum recovery is achieved at the top of the second barrier,
318+106 ≃ 424m3. On the other hand, the worst possible recovery at the boƩom of the barrier is 620 -194 ≃
426m3. These two values are far enough apart to have no overlap. Everything else equal, it is more reasonable
to choose the boƩom of the model for well-placement in similar cases as this locaƟon has access to more
resources.

Table 3: Recovery staƟsƟcs.

Barrier Depth Expected Recovery Standard DeviaƟon for Recovery
4.80 358.894 1.105
10.00 318.173 106.178
15.00 620.503 194.657
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Resource ConservaƟon versus Discounted Recovery
Let us look at the example in the previous secƟon again. As was discussed, the recovery is determined based
on quanƟle analysis (conservaƟve strategy is assumed with tan-1(55) as the cost of overesƟmaƟon (see Ap-
pendix 1) and tan-1(25) as the cost of underesƟmaƟon) which result in a recovery of about 504m3 at the top
of the second barrier and a recovery of about 405 m3 at the boƩom of the reservoir (quanƟle of 31.25% =

λunderesƟmaƟon/(λunderesƟmaƟon + λoveresƟmaƟon). However, the expected recovery is larger if the recovery
happens at the base of the model. These cases are common in this study. Our one-dimensional knowledge
inherits considerable uncertainty which would normally lead to a more complex decision making process. A
trade off between resource uƟlizaƟon and economic recovery is a concern in this analysis.

The decision in this context should be able to account for the relaƟve importance of resource con-
servaƟon versus discounted recovery. Resource uƟlizaƟon ensures that the reservoir has been recovered to its
fullest potenƟal; a decision on recovery at a lower quanƟle (i.e., < 33%)will facilitate resource conservaƟon. On
the other hand, there are situaƟons where operators are more concerned with the amount of recovery which
might be discounted. The opƟmizaƟon on the overesƟmaƟon side should account for recovery discount. A
higher quanƟle, say > 67%, evaluates the recovery aggressively (see Figure 9). Finally, in cases where both
are of equal importance, the decision based on the expected recovery is the safest route. For example, in
the earlier case also where the recovery at different locaƟons introduced overlap, a conservaƟve decision
would suggest recovery at the top of the second barrier with a recovery of 562 m3 resulted from quanƟle
analysis, and a recovery of 457 m3 at the boƩom of the reservoir. Here, the quanƟle analysis (quanƟle of
68.75% = 1 - [λunderesƟmaƟon/(λunderesƟmaƟon+λoveresƟmaƟon)]) for a risk-taking company suggests an almost
equal recovery of 655 m3 at both locaƟons. For the risk-taking company, the quanƟle analysis (quanƟle of
68.75%) again confirms the well placement at the boƩom of the model (724m3 against 370m3).

Comments on ApplicaƟon
The uncertainty in the reservoir study comes from a lack of knowledge of its geometry, property distribuƟon,
fluid flow, response to external sƟmuli (in well-placement), and economy-related variables such as uncertainty
in prices. We consider the uncertainly in geologic properƟes resulƟng from sparse well data. As menƟoned
earlier, the recovery in our case is due to the barrier's lateral extension. Our knowledge of the thickness and
depth of the barriers helps us build our understanding of the reservoir by esƟmaƟng the size of the barriers as
well as their posiƟons. Linear regression analysis on a few hundred barriers from the training image library has
been used to quanƟfy the barriers' uncertainty in length. The resulƟng parametric relaƟonship between the
thickness and length of the barrier has been used to predict the mean of the barrier length.

One-dimensional study of the borehole data results in quick idenƟficaƟon of the non-net thickness in
the reservoir. This knowledge can be uƟlized to map the thickness base elevaƟon. Similarly, this can be used
to map local trends and gradients. As the well pairs in SAGD should be placed parallel to the base contours,
the quick iso-base contours resulƟng from the non-net thickness and distribuƟon of the barriers can help with
well placement. One-dimensional well data analysis can also be applied to reconcile nearby wells. One could
esƟmate the distribuƟon of barriers using lateral extensions of the non-net intervals for every well, and then
compare to the nearby wells. This may idenƟfy problemaƟc data and help reconcile different elevaƟons.

Concluding Remarks
The work done in this paper is aimed at simplifying the reservoir study using limited data from a single well at
a Ɵme. The understanding of reservoir is based on non-net connecƟvity in the reservoir and how the barriers
are distributed over the given space. The thicknesses and locaƟons of barriers are combined with our lateral
extension analysis to helps with the esƟmaƟon andwell-placement. Although this analysis cannot account for a
reservoir's properƟes such as flow, it provides an iniƟal understanding of reservoir specificaƟons without going
through many complexiƟes.

This work has been limited to the uncertainty of the lateral extension of the barriers and their locaƟons
based on well data. Several other consideraƟons could be applied to analyze the effect on the drainage process
and opƟmal well-placement of SAGD. This could affect the recovery assessment and opƟmal well placement.
For example, in our 1-D analysis, we rely on the connecƟvity of non-net to esƟmate the pore volume and
possible presence of bitumen. Obviously, permeability in our case is an unseen parameter which in reality is
an important factor for pracƟcal recovery. Apart from the geological limitaƟons, recovery requires human
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experƟse in the design and configuraƟon of well placement; this makes recovery a funcƟon of addiƟonal
variables as well as the geological parameters.

Later also, the 1-D analysis applied to decision making on well-placement for opƟmal recovery. Reser-
voir study is only one aspect of the work. One would subsequently require applying judgment on the results
of the study. However, decisions are not easy to make as the study already includes considerable uncertainty.
In our one-dimensional analysis, as has been discussed, variabiliƟes in barrier lateral extension and its posiƟon
impose uncertainty on reservoir understanding and recovery evaluaƟon. Some examples given in this paper
discussed the decision making process based on quanƟle analysis. This is however, mostly depends on the
strategy on resource uƟlizaƟon versus the economic recovery.

Our future work considers the 1-D analysis which leads to interesƟng quesƟons and discussions on 3-D
processing. The interesƟng quesƟon is how and why the ranking process should be used and how to manage
the results for recovery purposes. There would be upcoming quesƟons in 3-D processing when intensive
simulaƟons are tried to be ignored. QuesƟons such as what realizaƟons are to be used? What would be the
best ranking scheme? And if clustering could be an efficient replacement to the ranking scheme?
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Appendices
Parameter Files

For the general case of staƟsƟcal recovery evaluaƟon, a program called ``SIZPOSRECOVERY'' has been
developed in GSLIB to draw samples for Hb and lc based on the thickness of barriers. The program prompts
for the parameter file. ProperƟes such as the linear regression between thickness and lateral extension (t and
Hb) correlaƟon, standard deviaƟon, number of barriers, size of the model and the input file which includes
the thicknesses and depths of the barriers can be changed as required. An example of this parameter file is in
appendix. This parameter file has beenmodified for the example of a two-barrier model with the input data file

Parameters for SIZPOSRECOVERY
************************

START OF PARAMETERS:
depth.dat - input Depth data file
1 2 - columns for depth scale, barrier depth
150 15 - model size for hoRizontal length, verƟcal length
2 - number of barriers
Hbproperty.out - output file
recovery.out - output file
40 10 - slope, intercepƟon
30 30 - Standard deviaƟon for every regression fit-barrier

listed in table 4. With the following arrangement, there are cases where the maximum recovery occurs at the
top of the second barrier, and some other cases where the boƩom of the model is the place for opƟmal well-
placement. The uncertainty regarding the opƟmal well-placement is the result of limited knowledge which
prevents us from determining the length of barrier and its centroid with certainty. The parameter file of
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Table 4: Depth data for case study.

Barrier Depth Barrier Thickness
4.8 1.7
12.0 1.3

``RecoveryVariance'' asks for the angles considered in overesƟmaƟon and underesƟmaƟon in addiƟon to the
other parameters which have been explained in ``SIZPOSRECOVERY'' parameter file.

Parameters for RECOVERYVARIANCE
******************************

START OF PARAMETERS:
depth.dat - input Depth data file
1 2 - columns for depth scale, barrier depth
150 15 - model size for horizontal length, verƟcal length
2 - number of barriers
recoveryStat.out - output file
recovery.out - output file
40 10 - slope, intercepƟon
25 30 - Standard deviaƟon for every regression fit-barrier
55 25 - Asymmetric Cost FuncƟon: overesƟmaƟon,underesƟmaƟon

Loss FuncƟon
Let's assume a loss funcƟon as below:

L(z - u) =
{

λ1(u - z) z ≤ u
λ2(z - u) z ≥ u

The objecƟve is to find z corresponding to minimum loss:

E{L(z - u)}

=

∫ u

-∞
λ1(u - z)f(z)dz+

∫ ∞

u
λ2(z - u)f(z)dz and f(z) =

dF(z)
dz

=

∫ u

-∞
λ1udF(z) -

∫ ∞

u
λ2udF(z)dz -∫ u

-∞
λ1zdF(z) -

∫ ∞

u
λ2zdF(z)dz

= λ1u{F(u) - F(-∞)} - λ2u{F(+∞) - F(u)}
λ1z{F(u) - F(-∞)} - λ2z{F(+∞) - F(u)}

= {λ1 + λ2}F(u)(u - z) + λ2(z - u) and z =
∫ +∞

-∞
zf(u)du = m(u)

= (λ1 + λ2)F(u)(u - m(u)) + λ2(m(u) - u)
= 0

⇒ F(u) =
λ2

λ1 + λ2

⇒ u = F-1
(

λ2
λ1 + λ2

)
Then equaƟng F(u) to p (quanƟle):

p =
λ2

λ1 + λ2
and 1 - p =

λ1
λ1 + λ2

; p ∈ [0, 1] (1)
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Note that, when λ1 > λ2, p < 0.5 ⇒ best esƟmate is < F-1(0.5). In pracƟce, higher cost of overesƟmaƟon will
result in call for a more conservaƟve esƟmate. If λ1 < λ2, p > 0.5 ⇒ best esƟmate is > F-1(0.5). This proves
that for asymmetric loss funcƟon, the decision p-quanƟle can be simply found by the raƟo in (1).
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Figure 1: The possible posiƟoning of barriers inside the model.

z 

R Hm 

Hb 

t 

R max 

(a) (b) 

Figure 2: Model (a), expected recovery (b).
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Figure 3: The parameters to define a barrier.
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Figure 4: Illustrates the correlaƟon between the lateral extension and thickness of the barriers. A few hundreds of barriers
from image training library have been selected for this analysis. The details can be found in (Lajevardi et al., 2011),
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Figure 5: Recovery comparison for different lateral extension of the barriers.
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Figure 6: Illustrates the amount of recovery on average at every depth, based on many different distribuƟon of barriers.
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Figure 7: Recovery with confidence interval.

overestimation overestimation underestimation underestimation 

Figure 8: The loss funcƟon at leŌ defines more cost in the case of overesƟmaƟon and the one at right defines more cost
regarding underesƟmaƟon. The one at leŌ is used when economic recovery is of more interest whereas the one
at right is more concert on resource uƟlizaƟon.
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Figure 9: QuanƟle analysis for the recovery distribuƟon of the example with no overlap.

Figure 10: Illustrates the barriers in red can not be idenƟfied by the well.
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