
Paper 301, CCG Annual Report, 2012 (© 2012) 

301-1 

Simulated Learning Model for Mineable Reserves Evaluation 
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During the lifetime of mining projects, the degree of knowledge of the deposit increases over time due to 
the continuous acquisition of additional data. The extra information is collected from different sources, 
including geologic mapping, production data, and infill drilling. With respect to the long term mine plan, 
the block model and the mining sequence are also updated, on a periodic basis. As the mining of the 
deposit progress, the block model becomes more accurate and uncertainty in ore production reduces, and 
the mining sequence becomes clearer. There has been extensive research on mine planning, but current 
techniques do not account for the evolution of the degree of knowledge of the deposit as an integral part 
of mine planning. Conventional paradigms assume that either that 1) the degree of knowledge of the 
deposit is static over time, or 2) there is access to perfect knowledge of the deposit. In this paper, a new 
paradigm for evaluating mineable reserves of surface mining projects is proposed. This new paradigm 
accounts for the dynamic behaviour of the degree of knowledge of the deposit in the design of the long 
term mine plan. During implementation, scenarios that characterize the dynamic nature of the mining of 
the deposit are simulated. Unlike conventional paradigms, where only the mining strategy is considered, 
the performance of the long-term mine plan in this new paradigm depends on both mining and data 
acquisition strategies. This feature provides a more realistic framework for evaluating mineable reserves 
than conventional paradigms. An example is presented to illustrate the implementation. 

Introduction 
In surface mining operations, the evaluation of mineable reserves consists of finding the mineable region 
of the deposit that results in the maximum profit of the mining project. The characteristics of the 
mineable reserves, including economic potential of the mining project and geometry of the mineable 
limits, are calculated during the design of the long term mine plan. The evaluation of mineable reserves 
involves many factors such as metal prices, mining and metallurgical technologies available, and local and 
international political environments. Geologic factors are represented by the block model of the deposit, 
which is built based on the current available geologic data, e.g., exploratory drilling campaign. Because of 
the complexity of the problem, many of these factors are assumed fixed (Hustrulid & Kuchta, 1995). 

Due to the extensive lifetime of mining projects, the factors involved in the evaluation of 
mineable reserves are subject to variability as a function of time. In practice, the block model of the 
deposit is updated periodically to include extra information collected. This extra information is collected 
from different sources, including blasthole data, infill drilling data, geologic mapping, and rock mechanic 
studies (Erickson & Padgett, 2011). It is typically assumed that the block model is invariant throughout the 
lifetime of the mining project to simplify the long-term planning process. 

Conventionally, the design of the long term mine plan consists of two steps 1) build the block 
model of the deposit, and 2) design the optimal mining sequence (Whittle & Whittle, 1999). Geostatistical 
techniques are typically implemented to construct the block model (Sinclair & Blackwell, 2002). The 
mining sequence is initially determined by optimization techniques (Alford, Brazil, & Lee, 2007). Extensive 
research has been conducted on mine sequencing algorithms that aim to maximize the net-present-value 
of the mining project. The proposed algorithms produce optimal results based on their respective 
conditions and assumptions. 

In this paper, a new paradigm that accounts for the periodic updating of the block model of the 
deposit is proposed. The conventional static block model is replaced by a dynamic block model that 
updates periodically. The periodic updating of the mining sequence is considered as a computational 
learning process: in each period, the mining sequence adapts the newly acquired information from the 
previous period. The evaluation of mineable reserves is carried out based on a set of realizations of the 
mining of the deposit. Each realization is treated as a scenario of how the future geology of the deposit 
may reveal itself, subject to a specified future data acquisition strategy. The proposed paradigm is called a 
Simulated Learning Model (SLM) due to the consideration of the mining of the deposit as a computational 
learning process. 
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First, the existing paradigms for mine planning are summarized and previous research is 
discussed. Next, the event-based model that is used in the SLM paradigm to characterize the mining 
process of the deposit is presented. The following section compares the SLM paradigm to the 
conventional paradigms in terms of how uncertainty in the mining of the deposit is quantified. In the 
following two sections, the implementation aspects of the SLM paradigm and an example are discussed. 

Background 
Extensive research has been conducted for developing mine sequencing algorithms that aim to maximize 
the net-present-value of a mining project. Gaupp (2008) reviewed and classified the majority of available 
algorithms into two categories: 1) ultimate-pit based and 2) comprehensive based techniques. In the first 
category, the ultimate-pit is calculated first to outline mineable limits. In the second category, the mining 
sequence is calculated directly. Osanloo, Gholamnejad, and Karimi (2007) proposed a different 
classification. In general, these techniques produce optimal mining sequences with respect to the 
assumptions of the global environment in which the mine plan is designed. The global environment 
consists of the factors, including the anticipated geologic, economic, and political factors, involved in the 
evaluation of the mining project. With respect to the geologic factors, three paradigms based on type of 
block model built are typically implemented. 

Paradigm 1 – Estimation 
The geology of the deposit is characterized by a kriged estimate model. The mining of the deposit is 
defined by one mining sequence. This paradigm precedes early developments of geostatistics in 
publications by authors such as David (1977) and Journel and Huijbregts (1978). The main problem of this 
paradigm is the impact of the smoothing of the estimated model on the mining sequence. The kriging plan 
is often tuned to achieve reliable recoverable reserve predictions or to mitigate conditional bias (Isaaks, 
2005). Since this paradigm relies on an estimated model, the value of the mining project is evaluated in 
expected terms with no consideration of uncertainty. This paradigm is widely implemented in practice 
due to its simplicity. 

Paradigm 2 – Simulation A (Estimation Based) 
This paradigm can be seen as an extension of paradigm 1. A set of simulated realizations of the deposit 
are built to evaluate the performance of the mining sequence, built based on paradigm 1. The realizations 
are processed through the single mining sequence to evaluate the uncertainty in ore production. This 
allows evaluating the mineable reserves in terms of uncertainty in operating metrics. The implementation 
of this paradigm has been presented by authors such as Dimitrakopoulos (1997) and Van Brunt and Rossi 
(1999). 

Paradigm 3 – Simulation B 
The geology of the deposit is characterized by a set of multiple realizations. One mining sequence is 
generated for each realization of the geology of the deposit. In this case, the project is directly evaluated 
in terms of operating metrics. This paradigm is not as widely implemented as paradigm 1 because the 
realizations of the geology of the deposit and mine sequence optimization runs are computationally, as 
each alternative must be processed individually (Dominy, Noppé, & Annels, 2002). Moreover, mining 
engineers would not know which alternative to follow. 

The conventional paradigms discussed do not account for the periodical collection of data in future 
periods. The acquisition of additional data is an inherent part of the mining of the deposit and improves 
the accuracy of the mining sequence as the mining of the deposit progress. In geostatistics, the impact of 
uncertainty in the mining sequence has been discussed by many authors, including David (1977), Journel 
& Huijbregts (1978), and Chilés and Delfiner (1999). There are some works that consider the effect of the 
collection of the additional data on mine planning. Froyland, Menabde, Stone, and Hodson (2004) 
proposed the simulation of future infill drilling campaigns to assess the impact on the net-present-value of 
the mining project. Journel and Kyriakidis (2004) discussed the effect of future blasthole drilling data on 
the evaluation of mineable reserves. Isaaks (2005), proposed a methodology to account for the 
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information effect in the block model of the deposit. Jewbali and Dimitrakopoulos (2009) discussed the 
impact of future blasthole drilling data in the design of a mining sequence. However, in these approaches, 
the time variable is not directly considered. The effect of the evolution of the DOKD, due to the 
continuous acquisition of additional data, on the performance of the mine plan is not accounted for. 

Event-Based Model of the Mining Process 
This model is used to approach the mining process in the SLM paradigm. In this model, the input 
parameters are grouped in two categories: 1) mining strategy and 2) data acquisition strategy. It will be 
referred to as SLM mining model. The mining strategy includes parameters involved in mine scheduling. 
The data acquisition strategy considers the parameters involved in acquiring additional data. The mining 
strategy is presented in the form of a mine sequencing algorithm that considers specific operating 
conditions to schedule mine production. Any of the different mine sequencing algorithms can be used as 
the mining strategy. The data acquisition strategy considers the collection of the additional data 
throughout the lifetime of the mining project. In practice, the additional data that contributes to the 
improvement of the degree of knowledge of the deposit (DOKD) is of many types and comes from 
different sources. In this paper, two sources are considered: 1) blasthole and 2) infill drilling data. The 
blasthole data is used primarily to fragment material in the scheduled regions during the mine operations. 
The infill drilling data is used mainly to improve the DOKD for medium-, long-term mine planning, and 
exploration purposes. 

The lifetime of a mining project is divided in three stages: 1) pre-production, 2) production, and 
3) post-production (Hustrulid & Kuchta, 1995). The evolution of the DOKD affects the mine plan in the last 
part of the pre-production stage in case infill campaigns are implemented. Throughout the production 
stage, the periods where material is extracted from the pit are considered. For example, in case that at 
the end of the production stage only material from stockpiles is sent to the respective processing plants, 
the corresponding periods are not considered. The post-production stage is not considered. For 
practicality, the lifetime of the mining project is considered as the time interval where the evolution of the 
DOKD affects the mining operations in the pit. 

In the SLM mining model, the lifetime of the mining project is divided into periods (see Figure 1), 
which can be annual or semi-annual, depending on the company policies that dictates the frequency in 
which the mine plan is updated. The lifetime of the mining project is divided in a set of consecutive 
periods where a set of four events occur: 

Event 1. Consolidation of existing data. 
Event 2. Design of the mining sequence. 
Event 3. Mining of the next scheduled region and acquisition of additional data. 
Event 4. Reconciliation of the scheduled region. 

Event 1 occurs at the beginning of the period. All the existing data is consolidated in one dataset. The 
DOKD at present time depends on the current consolidated dataset. As mining progress, the current 
dataset grows in size due to the continuous collection of additional data. The periodic growth of the 
current dataset results in the evolution of the DOKD. In Event 2, based on the current dataset, the block 
model of the deposit is built and the mining sequence is designed. In Event 3, the region targeted for 
extraction according to the current mining sequence is mined. In practice, to detail the mining of the 
targeted region, short- and medium-term plans are designed and implemented. Along with the mining of 
the targeted region, additional data from blastholes and infill drillholes are collected. Event 4 occurs at the 
end of the period and consists of reconciling the production of the current period. 

In each period, the reconciliation compares planned versus executed values. Two types of 
metrics are considered: production and economic. In the case of the production metrics, due to the lack 
of perfect knowledge of the geology of the deposit, following strictly the mining sequence would result in 
a discrepancy between planned and executed production. The implementation of short- and medium-
term mine plans details the mining of the current period and allows meeting the planned production 
target. The planned and executed production are considered similar. In the case of the economic metrics, 
the adjustment of the mining of the current period results in an increment of the planned mining cost. For 
example, if less ore is found non-scheduled regions are targeted for extraction by the short- and medium-
term plans to compensate the production gap. In an opposite case, if more ore is found, the surplus has to 
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be stored in stockpiles. Either way, the extra expenses incurred increase the planned mining cost. In the 
SLM mining model, the metric of economic performance is quantified in terms of the net-present-value. In 
the reconciliation, two types of net-cash-flow (NCF) are considered: 1) planned and 2) executed. The 
relationship between them is expressed as: 

 ( ) ( )ex i pl iNCF D NCF AC D= − , (1) 

where, Di represents the dataset available at the beginning of the i-th period, NCFex and NCFpl are the 
executed and planned of the i-th period, respectively, AC is the total extra cost incurred to adjust the 
mining of the i-th period. 

The negative impact, in economic terms, due to not having access to perfect knowledge of the 
deposit is accounted for by the AC term. The executed NCF equals the planned NCF only when there is no 
need to adjust the mine plan of the current period, e.g., in the case of Paradigm 3, where it is assumed to 
have access to perfect knowledge of the geology of the deposit before designing the mining sequence. 

At the end of the lifetime of the mining project, the mining sequence that is ultimately 
implemented consists of all the regions targeted for extraction in each period. This ultimate mining 
sequence will be referred to as operating mining sequence. The operating mining sequence results from 
the combined interaction between the mining and data acquisition strategies. Throughout the lifetime of 
the mining project, the data acquisition strategy improves the DOKD periodically, thus allowing the mining 
strategy to make more informed decisions. 

Comparison of the SLM Mining Model to Conventional Paradigms 
In the conventional paradigms, only the mining strategy is considered. The conventional paradigms are 
different in how they account for the DOKD throughout the lifetime of the mining project (see Figure 2). In 
the case of Paradigms 1 and 2, the DOKD of the initial dataset remains unaffected over time, as the 
acquisition of additional data throughout the lifetime of the mining project is not accounted for. In the 
case of Paradigm 3, it is assumed that perfect knowledge of the deposit is assumed accessible before 
designing the mine plan. Thus accounting for the acquisition of additional data would have no effect on 
reducing the production gap nor the adjustment cost. In terms of accounting for the evolution of the 
DOKD, Paradigms 1 and 2 are pessimistic, and Paradigm 3 is optimistic. The SLM paradigm is an 
intermediate scenario where the data acquisition strategy determines how the initial DOKD evolves 
throughout the lifetime of the mining project. The SLM paradigm presents a more realistic scenario since 
the dynamic nature of the mining of the deposit is accounted for. 

Paradigms 1 and 2 can be considered as the baseline of the SLM paradigm because only the 
initial DOKD is considered. Unlike paradigm 3, in the SLM paradigm, in any case it is assumed achieving 
perfect knowledge of the deposit. Even if the whole deposit is acquired as additional data, the evolution 
of the DOKD starts to affect the design of the mining sequence from the second period onwards. The 
presence of uncertainty in the first period cannot be avoided. This sets the upper limit of the SLM 
paradigm. The evolution of the DOKD plays an important role in the performance of the mine plan, and 
thus, in the evaluation of mineable reserves. A little evolution of the DOKD may not have much impact on 
harnessing the full economic potential of the deposit. On the other hand, an aggressive evolution of the 
DOKD may be adverse, as the cost associated to the acquisition of additional data will tend to reduce the 
profit margin of the mining project. 

Implementation Aspects 
In the implementation of the SLM paradigm, the SLM mining model requires that the additional data, 
which is collected throughout the lifetime of the mining project, is accessible at the time of the evaluation 
of the mineable reserves. Since only the initial dataset is available, the evaluation of the mineable 
reserves is carried out by simulating the acquisition of the additional data. This approach is used in the 
evaluation of prediction models, where comprehensive simulation models are used when real information 
is not accessible (Conejo, Carrión, & Morales, 2010). In the SLM paradigm, geostatistical techniques are 
implemented to simulate the additional data. Different realizations result in multiple scenarios of how the 
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deposit is mined (see Figure 3). Since the acquisition of additional data affects the mining of the deposit 
from the second period onwards, the mining of the first period is identical for all the scenarios generated. 

Definition of the Mining Strategy 
The mining strategy specifies how to proceed with the mining of the deposit based on a set of specified 
conditions. The mining strategy is specified in the form of a mine sequencing algorithm. Osanloo, 
Gholamnejad, and Karimi (2007) classified mine sequencing algorithms based on how they consider the 
block model in: 1) deterministic and 2) uncertainty-based. Since the reduction of production variability is 
important in the performance of the operating mining sequence, it is preferable to implement an 
uncertainty-based mine sequencing type algorithm.  

Definition of the Data Acquisition Strategy 
The data acquisition strategy consists of specifying how the collection of additional data is implemented. 
Since the blasthole source is primarily implemented to fragment material in the regions to mine, the infill 
drilling source is the only source of additional data that can be controlled. In this paper, three aspects of 
the acquisition of infill drilling data are considered: 1) objective, 2) quantity, and 3) timing. The objective 
aspect considers the goal of the data acquisition strategy. For example, the improvement in the accuracy 
of the mining sequence in the medium- or long-term. It may be preferable to dedicate part of the 
additional data acquisition plan to the medium-term production, as it has an immediate effect in the 
improvement of the performance of the operating mining sequence. The quantity aspect specifies the 
amount of data samples to collect from the drillholes in the infill drilling program. The objective and 
quantity aspects depend on the timing aspect, as infill campaigns are implemented in each period 
throughout the lifetime of the mining project. The objective and the quantity aspects are defined 
individually in each period for each of the infill drilling campaigns implemented throughout the lifetime of 
the mining project. Similar to the mining strategy, the data acquisition strategy is specified in the form of 
a data acquisition algorithm that sets the implementation of the infill drilling program, in terms of how, 
where, and when to place the infill drillholes throughout the lifetime of the mining project. 

Simulation of the SLM realizations 
The generation of the SLM realizations or scenarios of the mining of the deposit are based on the SLM 
mining model. Because of the huge number of factors and variables involved, the detailed reproduction of 
the SLM mining model is intractable. For practicality, some aspects are simplified and adapted during the 
implementation. The implementation of the SLM mining model is discussed as follows: 

Event 1: Consolidation of Existing Information 
This event consists of gathering all available information from exploratory, infill, and blasthole sources. 
The initial dataset consists of real available data that depends on the stage of the mining project. In case 
the mining project is about to start production, the initial dataset consists mainly of the exploratory 
drilling campaign. In case the mining project is already in the production stage, besides the exploratory 
drilling campaign, blasthole and infill drilling data are available. Throughout the lifetime of the mining 
project, the consolidated dataset grows in size, as simulated future collected dataset is included. There is 
one realization of the consolidated dataset for each realization of the mining of the deposit that is 
generated. 

Event 2: Design of the Mining Sequence 
This event starts with calculation of the block model of the deposit. Since the consolidated dataset 
consists of different of data of different types and scales, the modeling technique implemented should 
integrate diverse data. In mining, co-kriging is a popular technique that is able to integrate data from 
different sources. This technique is widely discussed by many authors such as Journel and Huijbregts 
(1978), Goovaerts (1997), and Chilés and Delfiner (1999). 

The mining sequence is designed based on the block model of the deposit. A mining sequence 
algorithm that accounts for the operating conditions of the mining project is considered along with a 
specific set of operating parameters. The region of the group of blocks targeted for extraction serves as 
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reference for outlining the operating design of the mining sequence. As in the case of the simulation 
paradigm, because of the difficulty of automating this process in the generation of a large number of 
scenarios of the mining of the deposit, the extraction sequence of the blocks is taken as the mining 
sequence. 

Event 3: Mining of the Current Scheduled Region and Acquisition of Additional Data 
The region targeted for extraction is mined from the block model. This is done by updating the current 
topography so that the blocks targeted are above the new topographic surface. The adjustment of the 
scheduled region by the short- and medium-term plans to meet the production requirements is skipped, 
as it is difficult to automate. The implication of skipping the adjustment of the targeted region is discussed 
in the next event. 

The additional data is collected from the blasthole and infill drilling sources. In the case of the 
blasthole source, the additional data is collected from the mined region. The configuration of the 
blasthole samples is approached by using a regular grid pattern with operating dimensions that is 
positioned in each bench of the mined region. In the case of the infill drilling source, for practicality, the 
collar position of the drillholes can be approached either from the topographic surface before or after 
mining the current region. In practice, the collar positions are determined from the topographic surface 
that is updated as the targeted region is mined. Due to the scale of mining, the difference in the total 
drilling length is considered negligible. The geometric configuration and the number of infill drillholes to 
collect is defined in each period by the data acquisition algorithm and the specifications of the infill drilling 
program. 

The data from the blasthole and infill drilling sources is obtained by simulating the sample values 
conditioned to the current consolidated dataset. As in the case of building the model of the deposit, 
because of the different data types and scales, the simulation technique should also be able to integrate 
diverse data. A suitable alternative is the implementation of co-simulation. In case the initial dataset only 
consists of the exploratory drilling campaign, the problem of inferring the joint statistics between the 
different data sources is a very difficult task (Journel & Kyriakidis, 2004). The scale and accuracy of the two 
sources are taken into consideration during the simulation of the additional data. 

Event 4: Reconciliation of the Scheduled Region 
At the end of the current period, the planned and the executed regions are compared. Since the 
adjustment of the targeted region by the short- and medium-term plans is skipped, these two regions are 
identical. In this context, Equation (1) is not valid. The adjustment cost, AC term, is approached based on 
the variability between the planned and executed production. Throughout the lifetime of the mining 
project, the executed production profile departs from the planned production profile, resulting in under- 
and over-production. In the case of over-production, the maximum capacity of the plant would restrict to 
processing. The surplus would be stored and processed in the following periods. In the case of under-
production, the mine is not able to meet the production requirements. Either way, it is considered that 
the variability in the mine production has always a negative impact on the executed NCF with respect to 
the planned NCF. The AC term in equation (1) is approached by imposing penalties on the production 
variability. 
 The executed BCF is approached based on the production gap of the current period. or simplicity, 
the proposed approach considers the negative impact of the production gap on the executed NCF is 
independent in each period. Alternative approaches may consider the interaction between periods. For 
example, over-production in earlier periods may relieve the effect of under-production in latter periods. 
The proposed expression for calculating the executed NCF is: 

 ( ) ( )' 'ex i pl iNCF D NCF AC D= −  (2) 
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 where, 'exNCF  is the approached executed net cash flow, 'AC  is the approached adjustment 

cost, ovpp  and unpp  are assigned over- and under-production penalty factors, respectively, plOT  is the 

planned ore production, and exOT  is the executed ore production considering the long-term mining 
sequence is executed strictly without implementing short- nor medium-term plans. The production gap of 
the current period is expressed as the difference between the planned and executed ore production, 

ex plOT OT− . The production gap can be calculated in different ways, ore tonnage, net-metal content, 

etc. 
To calculate the referential executed production, at the end of the period, perfect knowledge of 

the mined region is considered accessible. The geology of the mined region is characterized by a 
realization conditioned to the current consolidated dataset and the newly collected additional data. The 
comparison between the executed and planned production values is made at block scale. 

Example 
A synthetic deposit is evaluated based on the conventional and the SLM paradigms. The implemented 
mining strategy consists of maintaining a constant production of 2500 MT of ore per period, throughout 
the lifetime of the mining project. For illustration purposes, no discount rate is used to calculate the profit 
of the mining project. The profit is calculated in terms of the sum-of-net-cash-flows (SNCF). The additional 
data considers the blasthole and infill drilling sources. For the infill drilling program, six infill drillholes per 
period is considered. The infill drillholes are positioned targeting the more uncertain regions, based on the 
kriging variance, close to the mined region. A sequential positioning is considered to implement the infill 
drilling campaigns. 

The dimensions of the deposit are 400m x 240m x 160m east, north, and vertical, respectively. An 
initial topographic surface is used to outline the original state of the deposit before the mining takes 
place. The resolution of the block model is 100 x 60 x 40 with a block of 4 m x 4 m x 4 m. A constant block 
tonnage of 1 MT per block is used. When a block is intersected by the topographic surface, the tonnage is 
calculated based on the proportion of the block below the surface. The mining project is considered to be 
in the pre-production stage and the only available information is the initial exploratory drilling campaign 
that consists of twenty-eight drillholes placed over a regular grid pattern (Figure 4). 

The evolution of the DOKD depends on the data acquisition strategy implemented. In Figure 5, a 
realization of the evolution of the DOKD is shown. Accounting for the evolution of the DOKD and its 
impact on the mining of the deposit is the core aspect of the SLM paradigm. 

In each mining scenario that is generated, the simulated evolution of the DOKD accounts for the 
improvement of the accuracy of the mining sequence to mine the deposit. In Figure 6, the expected 
accuracy profiles, in terms of the mean-absolute-error (MAE) of ore production, of Paradigm 2 and the 
SLM paradigm is shown. As Paradigm 2 is the base case where only the initial data is considered, the 
difference between the two cases presents the effect of the additional data acquisition. The profile of 
production gap of the SLM paradigm depends on both the mining and data acquisition strategies, which is 
evaluated in the SLM framework. 

In Figure 7, a case of the production gap of one realization of the SLM paradigm is shown. The 
production gap of the long-term mining sequence is used to approach the adjustment cost, which impacts 
directly on the planned and executed metrics. The executed SNCF is calculated as a function of the 
extracted material penalized by the production gap (equation 2). 

In Figure 8, the mean and dispersion of the executed SNCF for the conventional and the SLM 
paradigms are presented. Paradigm 2 presents the lowest performance, as the difference between the 
planned and executed metrics do not improve. In the SLM paradigm, the progressive reduction of the 
production gap, throughout the lifetime of the mining project, helps to improve the executed SNCF of the 
mining project. Between the two cases, the SLM paradigm performs better than Paradigm 2. Paradigm 3 
presents the best performance among all the paradigms evaluated. However, this evaluation is unrealistic 
as access to perfect knowledge of the deposit is a requirement. 
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In terms of the expected values of the executed SNCF, the conventional paradigms represented 
the lower and upper limits of the evaluation (see Figure 9). The SLM paradigm, depending on the data 
acquisition strategy implemented, will results in intermediate realistic scenarios. 

In this section, the impact of implementing a specific data acquisition strategy in the evaluation 
of mineable reserves is presented. The unrealistic results of the conventional paradigms, underestimation 
and overestimation of the SNCF, are discussed and showed as inappropriate to assess the economic 
potential of the deposit. 

Concluding Remarks 
In this chapter, a new paradigm for evaluating mineable reserves named SLM paradigm is presented. In 
the SLM paradigm, the static behaviour of the model of the deposit and the mining sequence, considered 
in conventional paradigms, is replaced by a dynamic behaviour. The continuous adapting of the mining 
sequence due to the evolution of the DOKD is characterized as a computational learning process. The SLM 
paradigm provides a more realistic framework for evaluating mineable reserves than conventional 
paradigms. 

Since only present data is accessible at the time of the evaluation of the mineable reserves, the 
acquisition of the additional data is simulated to overcome the problem that this data is not accessible 
until the end of the lifetime of the mining project. The simulation of the acquisition of the additional data 
helps to account for how the future geology of the deposit may reveal itself, subject to mining and data 
acquisition strategies. Each realization of the acquisition of the additional data results in an equally 
probable scenario of the mining of the deposit. 

The implementation of the SLM paradigm is computationally more expensive than the 
implementation of the conventional paradigms. Most of the computational work corresponds to the 
updating of the block model of the deposit and the mining sequence. During the generation of each 
realization of the mining of the deposit, these two tasks are repeated periodically throughout the lifetime 
of the mining project. 
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Figure 1: Sketch of the model of the mining process used in the SLM paradigm 

 
Figure 2: Schematic comparison of the SLM and conventional paradigms based on how they account for 
the DOKD 
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Figure 3: Sketch of the simulation model of the mining of the deposit 

 

 
Figure 4: Position of drillholes of the initial exploratory drilling campaign 
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Figure 5: State of the block model of the deposit for the initial, 5th period, 9th period, and final period of 
SLM case with six infill drillholes per period 

 
Figure 6: Impact of collection of additional data on the production gap 

 
Figure 7: Impact of mining sequence production gap on the executed SNCF for a realization of a mining 
scenario 
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Figure 8: Variability of SNCF for conventional and the SLM paradigm 

 
Figure 9: Comparison of executed SNCF values in expected value terms 
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