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Modeling Multiple Rock Types with Distance Functions: 
Methodology and Software 

 
Daniel A. Silva and Clayton V. Deutsch 

 
The sub division of the deposit into estimation domains that are internally consistent and externally 
different has a great practical importance in resource estimation. The geometric limits of the different 
domains have a large impact on the mineral resource estimate.  It is common to create a manual 3D 
wireframe geological interpretation to provide the geometric limits for estimation or simulation of the 
grades. The distance function technique provides a fast automatic approach to support the interpretation 
process; however, the distance function approach is primarily developed for the binary case. An extension 
to more than two types of rock is proposed in this paper.  A measure of uncertainty in the correct domain 
is measured by a coefficient that provides a measure of confidence of the different geologic domains 
prevailing at each location. 
 
Introduction 
All geostatistical techniques require an assumption of stationarity. The deposit is subdivided into domains, 
each of them modeled separately. The key problems are to assemble representative statistics within each 
domain and establish the spatial extents of each domain.  The answer to these problems amounts to a 
decision of stationarity. 

Cross sectional and plan view interpretations constitute an effective and reliable technique to 
understand the spatial extent of the different domains. Construction of 3D geological wireframes within a 
mining package is a critical step in most resource estimation. The different domains are digitalized on 
cross sectional and plan views, allowing an interpretation of the shape and volume of the different 
mineralized domains. This is, however, a time consuming process. Moreover, this manual interpretation 
process is not particularly flexible for fast updating when new information becomes available. Also, the 
manual interpretation permits professional judgment to be brought to bear on the results, which is an 
advantage; however, there is a significant amount of subjectivity and lack of reproducibility, which is a 
disadvantage. 

The subjectivity of geological models constructed by manual interpretation affects the shape and 
volume of modeled domains, especially in those sectors where the information is sparse. The manual 
interpretation assumes fixed boundaries between domains with no assessment of uncertainty is not 
provided.  The distance function technique is a useful approach to overcome some concerns related to 
the manual interpretation process.  It does not account for the fact that a trained professional can often 
understand important trends and specific patterns leading to improved results. The distance function 
methodology is based on the interpolation of a distance measure. Each sample is assigned an anisotropic 
Euclidean distance between itself and the nearest sample belonging to another domain. Negative values 
represent the distance to the boundary for samples within a particular domain, and positive values are 
used for the distance to the boundary for samples outside the domain. 

The interpolation of this distance measure aims at constructing binary domain models through 
the application of a zero cut off rule. Volumes of negative distance function are inside the domain 
(McLennan, 2008; Hosseini, 2009). Any estimation technique could be used for the distance function 
variable, but kriging takes into account the anisotropy and spatial continuity of the distance measure. An 
original approach developed by Wilde and Deutsch (2011) introduces the uncertainty concept and 
proposes its assessment between domains. The key idea consists of calibrating a bandwidth of 
uncertainty along the domain frontier with two parameters C and β. The first controls the thickness of 
bandwidth and the second the position and distribution of tonnage within the bandwidth.  This is fully 
developed in the recent master’s thesis of Mike Munroe (Munroe, 2012). 

All distance functions techniques proposed before have been focused on geological modeling the 
binary case - interpolation of positive and negative values corresponding to out and in a specific domain 
of interest. We propose an extension to any number of domains and introduce a variance ratio that is able 
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to assess the uncertainty in the assignment of domain types. A FORTRAN code – dfmod– was developed 
to perform the multiple domain modeling. 
 
Distance Function Binary Case 
As explained by Hosseini 2009, the distance function starts by coding the samples with zero or one 
according to their domain, as shown in expression (1). Either positive or negative distances measure may 
be calculated. Commonly, negative values are assigned to those samples inside the domain and positive 
values outside (2). 
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where uα corresponds the position of samples, with 𝛼 = {1, … . ,𝑛}. A classical Euclidean distance 
measure is considered to calculate the distance from the sample to the nearest boundary (2).  
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Anisotropy can also be accounted for according to the geological shape and orientation of the domain, as 
shown the following equation. Where dx, dy and dz represent the differences between the coordinates of 
two samples, and rx, ry and rz correspond to the ranges of anisotropy.  The X, Y, Z coordinates would 
correspond to the rotated directions of major continuity. 
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An interpolation process – inverse distance or kriging – is performed using the assigned distance measure. 
Both inverse and kriging may generate smooth and realistic boundaries for the domain. The use of all 
samples in a global search strategy avoids the presence of artifacts or undesirable patterns. 

Figure 1 shows the modeling of two domains based on the distance function for the binary case. 
First, the samples are flagged using expression (1); afterward, the distance from the sample to the nearest 
boundary is calculated according with (3). A global ordinary kriging is performed considering the 
variography and geological anisotropy from the exploratory data analysis. Finally, at all estimated location 
the expression (2) will determine the domain which it belong applying the zero cut off rule.  
 
Distance Function Extension based on Multiple Domains 
This work proposes an extension of the distance function technique from the binary case to multiple 
domains. The aim is to model multiple domains at the same time using a procedure similar to the binary 
case. First, we start by coding the samples k times, once for each domain (k=1,…,K).  
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Thus, we will have at each sample k-1 indicators equal to zero and one equal to k, which is associated to 
the k domain. A function F maps the indicator of domain k with the distance measure at that sample, as 
shows expression (5). 
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The k-1 distance functions that have positive values indicate the distance between the samples outside of 
domain k and the closest sample within domain k. Conversely, the remaining k negative value represents 
the distance of the sample within the domain and the closest sample outside. Finally, for each k indicator 
an interpolation of distance functions is performed. Each unsampled location has K estimate distances. 

The distance function estimates may be interpreted as the closeness to the domain boundary. In 
the case of multiple domains, the minimum value between all estimated distances represents the most 
distant domain to the boundary or the domain with less uncertainty at that location. Expression (6) 
summarizes the proposed solution for multiple domains, which codes each interpolated location with the 
indicator associated to the minimum value of the K estimated distances. 
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Let’s illustrate the proposal technique with an example using four domains. Figure (2.A) represents the 
view on a bench of samples of each domain, each of them represented by squares, circles, diamonds and 
triangles. The indicator expression (4) is used to code each sample for each domain, repeating the process 
four times. Afterward, at each data location, the sample code is mapped to a distance function using (5), 
assigning negative values for those samples inside the domains and positive outside. A global ordinary 
kriging is performed for each domain taking into account the anisotropy and variography analyzed from 
the samples. The final code at all unsampled location corresponds to the minimum estimated distance 
measure from the four domains according with (6). Figure (2.B) shows the samples and the final coded 
model. 

A second example is presented in Figure 3. In this case, the modeling process is performed on a 
cross sectional. Similar to the example above, four drillholes show that four domains have been 
interpreted: hanging wall (circles), the first vein structure (squares), a second vein structure (diamonds) 
and finally the foot wall (triangles). Figure (3.B) shows the shape and orientation of the final model of the 
four domains.  

In both cases, the anisotropy plays an important role in the interpretation realized by the 
distance function technique. Also, the understanding of directions of continuity is extremely important to 
regulate the extrapolation of certain domains. Some professional judgment and subjectivity is inevitably 
required.  
 
Estimation Parameters Calibration and U Coefficient 
Cross validation or the Jackknife could be used to evaluate the performance of the technique and improve 
the estimation/simulation parameters. Most cross validation/jackknife implementations in mining 
software packages work with continuous variables.  In addition to cross validation, it would be useful to 
have a measure of certainty in the assignment of rock types at each location.  

The proposed methodology estimates a distance measure for each domain. The classification 
process explained by Expression (6) shows that the code associated at an estimated location corresponds 
to the minimum value. We can utilize the relationship between this minimum estimated distance and the 
remaining estimates to introduce a U coefficient that measures how much the chosen domain dominates 
the others. Let’s define the coefficient as the ratio between the variance of all the estimated distance 
values less the minimum value standardized by the variance of all estimated distances. 
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where dFm (u□) is the minimum estimated distance. This ratio takes a value between zero and one. If the 
value is close to zero the difference between the minimum and the remaining estimated distances is 
large, that is, most of total variance is due to the minimum value. This can be interpreted as the code that 
was assigned at that location has a high probability to belong to that domain. On the other hand, if that 
value is close to one the distance of the chosen domain is close to the distances of the other domains, 
namely, any of the other domains could be found at the location; there is large uncertainty.  

An example developed in Figure (4) shows some results for a model of four different cross 
validation estimation parameters settings; Figure (4.A) represents the original domain configuration of the 
samples. The performed cross validation considers the same anisotropy and variogram ranges and 
structures; however, the orientation of the maximum range in the variogram changes for each cross 
validation. Thus, Figure (4.B) show a configuration with a dip of 135 degrees, (4.C) 70 degrees, (4.D) 0 
degrees and (4.E) 35 degrees major axis orientation. The aim is to show cross validation using parameters 
that do not reflect the real shape and orientation, and parameters that properly fit the ore body 
characteristics. A specified set of samples was chosen to evaluate the cross validation performance. Each 
domain changes from the worst to the best configuration of parameters (bar graphic from F to I). It is 
possible to observe that the best parameter configuration is represented by cross validation E and Figure 
(4.I), a variogram with an orientation of 35 degrees reflecting the original model Figure (4.A). 

The U coefficient quantifies the performance of the input parameters on the cross 
validation/jacknife process. Figure (5) shows a plot of the U coefficient for all samples submitted to cross 
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validation with different settings. The graphic shows how the line of each cross validation moves to the 
upper left corner because the values of U coefficient decreases from cross validation configuration B to E, 
which indicates the improvement of the estimation. Thus, the U coefficient allows comparing the 
performance between different configurations of estimation parameters using a cross validation process. 
Finally, Figure (6) shows the final estimated model related with each of the input parameters used. The 
different input parameters affect the estimated models from a poor quality Figure (6.1) to the best 
acceptable model Figure (6.4).  

The use of the U coefficient is not limited to the evaluation of cross validation/jacknife results. 
The coefficient can be calculated at all estimated locations on a grid representing a measure of 
uncertainty. The same example utilized in Figure (2) illustrates its use. Figure (7) shows a U coefficient 
map where the locations near to the boundaries present values close to one, and locations clearly within 
a specific domain have values close to zero. There are clear zones of uncertainty near some boundaries. 
The proposed application methodology helps us understand the continuity and relationship between 
domains, but requires a reasonable knowledge of the deposit orientation.  The main goal is to provide a 
supporting tool for geological interpretation that allows distinguishing the places where professional 
judgment should be considered. 

 
Program Parameters 
The source code and the executable file are provided with this paper.  

 
 
The parameters are equivalent to the kt3d program. Lines 5 to 9 are self-explanatory. The output file with 
the calculated distance between units and the final file with the codes for each unit at all location are set 
up on lines 10 and 11. There exists the option on line 12 to perform the methodology as a cross-validation 
or jacknife tool. From lines 14 to 20 correspond to parameters for the grid, block discretization and 
estimation.  From line 21 to 27 are established the parameters for search, variography and type of kriging, 
which are evident. From here forward, for each new categorical code a new set of lines with the 
parameters need to be written, that is the case for the codes 2 and 3. 
 
Conclusions  
The interpretation and knowledge of domains – geological units – is a crucial stage for mineral resources 
estimation. Nowadays, the interpretation process is mostly done manually considering the judgment and 
expertise of geo-professionals; however, this process is time consuming due to the amount of plan and 
cross sectional views that must be modeled, which depends on the complexity of the ore body. 
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Furthermore, there is a lot of work when new information becomes available, e.g., new drilling 
campaigns. The distance function technique partially overcomes these issues by supporting the geological 
interpretation. The proposed work extends the capacity to model more than two domains and also 
introduces an uncertainty U coefficient. This coefficient is able to quantify the performance of estimation 
parameters through a cross validation/jacknife process adjusting the parameters and improving the 
quality of the final models. Indeed, the U coefficient can be interpreted as a tool to assess the uncertainty 
at unsampled locations, especially to those near to the boundaries. This novel distance function approach 
supports information about patterns, location boundaries and uncertainty for geo-modeling purposes. 
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Figure 1: Samples on a plan view  within domain – white bullets- and outside domain black bullets (upper 
left);  negative and positive interpolated distances (upper right), and location flagged as domain – black – 
and outside – white- (bottom). 
 

                    
Figure 2: Samples on a plan view for four different domains (left), and the final domains model 
determined from distance functions interpolation (right). 
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Figure 3: Four different domains samples on a cross section (left), and the final domains model 
determined from distance functions interpolation (right). 
 

 

    
 
 

 

 
 

 

 
 

 

 
 

 
    
Figure 4: Cross validation of samples with four different parameters set up (above). Bar graphic with 
estimated distances for a particular sample (below).  

A B 

Cross Validation (B) 

(A) 

(F) (G) (H) (I) 

Cross Validation (C) Cross Validation (D) Cross Validation (E) 



Paper 307, CCG Annual Report 14, 2012 (© 2012) 

 307-7 

 
Figure 5: U coefficient plotting for each sample according with each cross validation parameters 
configuration 
 

  

  
Figure 6: Four different final models for different configuration of input parameters. Each of the figure 
corresponds to the parameters set up for the cross validation 1 to 4. 
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Figure 7: U coefficient map for assessment of uncertainty 


