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A New Model of Coregionalization for Variograms of Different Shape 
 

Jared L. Deutsch and Clayton V. Deutsch 
 

A common challenge for multivariate geostatistical analyses is modeling variables that have been 
measured on different supports. Variograms and cross variograms for these variables will often exhibit 
different shapes; the variogram of larger support data showing more short scale continuity. The linear 
model of coregionalization (LMC) cannot be used in these cases. A new coregionalization model for 
variograms of different shape is required. An extended linear model of coregionalization (ELMC) is 
presented here that modifies the underlying covariance functions with a volume regularization operator. 
The resulting model can be used to calculate licit, semi-positive definite covariance models suitable for 
modeling variograms of different shape. The ELMC is implemented in the program vmodel_elmc.  
 
Introduction 
The linear model of coregionalization (LMC) remains one of the only practical multivariate 
coregionalization models available to the geostatistician in all but the most trivial of cases. There are, 
however, a number of drawbacks to the LMC including difficulties in constructing semi-positive definite 
models and the inability to deal with variograms or covariance functions with different shapes. The 
construction of licit models can be addressed by using semi-automatic fitting software, such as 
varfit_lmc; however all variogram models must share the same structure shapes (ie: spherical, 
exponential, Gaussian). This limitation is significant when variables are measured on different volume 
supports.  

When correlated variables are measured on different volume supports, as would be the case for 
core data and remote sensing, the variograms will often have different shapes. Remote sensing data may 
exhibit a Gaussian shape due to the large support volume compared to a spherical variogram, often with a 
significant nugget effect, observed for core data. The cross variogram or covariance will then generally 
exhibit a Gaussian shape. This situation is shown in Figure 1. For this situation it is impossible to model 
both the short scale variability of the spherical Z1 and Gaussian Z1Z2 and Z2 accurately using the LMC.  

Recent work by Marcotte (2012) on a generalized linear coregionalization model (GLCM) is very 
promising to address this issue. Marcotte presents 3 operators which modify the implicit underlying 
variables in the LMC. The observed random variables are then given as a sum of underlying random 
variables and functions of these variables. These operators are the first order partial derivative, a location 
shift and a regularization operation. Of these operators, the regularization operator is of the most interest 
to the authors because it has the potential to address the problems presented by variograms of different 
shape. In this paper, an extended linear model of coregionalization (ELMC) is introduced based on the 
ideas of Marcotte’s regularization operator. The ELMC incorporates the underlying variables of the LMC 
with weighted volume regularization functions of these variables. A program, vmodel_elmc is 
presented which implements the ELMC for plotting covariance functions.  

 
Theory 
Recall the definition of the linear model of coregionalization; notation used here will be similar to that 
used by Marcotte (2012). A K x 1 random vector of observed variables, Z, is taken to be a linear 
combination of M orthogonal, underlying (unobserved) variables Y. The decision of stationarity for Z for 
geostatistical and covariance modeling also applies to the Y underlying random variables. We chose that 
the Y variables are standardized (mean of zero, variance of 1) and are related to Z by a K x M matrix of 
unknown coefficients, A as:  
 =Z AY  (1) 
If the mean of Z is non-zero, then a mean vector could also be added without affecting any of the 
covariance relationships developed in this paper. The orthogonality constraint on Y implies that: 
 Cov{ ( ), ( )} 0  where   ,  from 1,...,i jY Y i j i j M+ = ∀ ≠ ∀u u h h  (2) 

The covariance matrix of Z is then: 
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 '=Z YC AC A  (3) 
The linear model of coregionalization (LMC) is given by covariance components C l(h) with contributions 
described by K x K B i semi-positive definite matrices: 

 
1

( ) ( )
L

l l
l=

=∑ZC h B C h  (4) 

As noted by Marcotte, the B i matrices are from the diagonal of AA’. For L structural components the 
dimension of Y is implicitly specified to be M = K x L. Generally fitting programs like varfit_lmc only fit 
the B i matrices. The A matrices are assumed implicitly by the model. Marcotte considered the addition of 
functions of Y to the Z variable to form a generalized linear coregionalization model. For this extended 
linear model of coregionalization, we restrict our interest to consider a weighted, volume (v) averaged 
operator to address challenges caused by different variogram shapes. Consider the variable 𝑌𝑚���� to be the 
weighted, volume averaged value of the variable Ym. The weight function wm(u) is taken to be a radial 
basis function around the location u.  
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The extended model for Z can then be written as: 

 = +Z AY AY  (6) 
The resulting covariance matrix is a series of matrix multiplications on 4 covariance matrices (see 
Appendix for derivation): 
 ′ ′ ′ ′= + + +Z Y YY YY YC AC A AC A AC A AC A  (7) 
The covariance matrix for Z is symmetric and requires 3 new covariance types to be calculated. The cross 
covariances between different volume averaged variables are zero; these degenerate as the original 
variables are orthogonal. The three new required covariances are therefore: 
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The integrals for the three types of covariance functions involving the volume averaged underlying 
variables can be calculated from (5) (see Appendix for derivation): 
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 (8) 

All three covariance functions can only be expressed symbolically as far as the volume integrals without 
analytical functions for the volume, weights and covariance functions. At this point, these covariance 
functions are theoretically licit for calculating the ELMC. Practical implementation of the ELMC requires 
restricting ourselves to specific covariance, weight and volume functions. These restrictions will be 
discussed together with numerical implementation details.  
 
Numerical Implementation 
Many of the assumptions made are the same as for the LMC. We restrict ourselves to selected covariance 
functions valid in 3 dimensions for which the covariance is only a function of an anisotropic lag separation 
vector h. Possible covariance functions could include the nugget effect, spherical, exponential or Gaussian 
covariance functions as implemented in standard GSLIB (Deutsch and Journel, 1998) and CCG programs.  
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The volume integrals can be approximated by numerical integration techniques. Regularization 
volumes we consider are rectangular prisms and ellipsoids. We consider the weighting functions to be 
anisotropic radial basis functions over an arbitrary ellipsoid. The radial basis functions considered are 
(Figure 2):  
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2) Linear: ( ) 1 ( )

13) Inverse multiquadric: ( )
1 ( ( ))
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w c
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 (9) 

Where r is the anisotropic normalized radius and c is an arbitrary constant. If the location u falls outside of 
the weighting ellipsoid (Figure 2), the weight is null. Assuming that a reasonably large weighting domain 
which spans the regularization volume is chosen, the weighting function will be continuous and smooth 
over the domain of interest. In addition, the covariance functions considered are continuous and smooth 
over the regularization volume. The nugget effect is a special case for which the volume integral is exactly 
zero, and hence the covariance of the volume averaged variables is zero as well.  

For the smooth weighting and covariance functions that will be considered, both of these shapes 
can be integrated efficiently using numerical quadrature algorithms such as those compiled by Stroud 
(1971). These algorithms discretize the shape into n points with weights ω j for j=1,…,n, ∑ω j=1 for which 
the integrand is evaluated and summed. For double integrals, this procedure is iterated. The three types 
of covariance functions in Eq. 8 can then be expressed as: 
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 (10) 

Increased numerical efficiency can be obtained by neglecting the volume averaging in (10); this approach 
was taken in the numerical implementation used. The two quadrature algorithms chosen were the 13 
point C3 5-1 algorithm for a unit cube and the 21 point S3 5-2 algorithm for a sphere (Stroud, 1971). The 
integration results are exact if the integrand is a polynomial of degree 5 or less. Higher degree formulas 
could be substituted if a more precise estimate of the integral was required at the expense of increased 
computational time for all covariance calculations.  

For non-unit volumes, the integrand evaluation points and weights must be rescaled. There are 
two possible approaches to determine the correct coordinates and weights. In the first approach, the full 
affine transformation could be considered. Details for this transformation applied to numerical 
quadrature are given by Stroud (1971). A more intuitive approach from the authors’ perspective is to 
divide the problem up into a coordinate rotation and linear scaling. First, the evaluation points are rotated 
to be along the major directions of anisotropy in the ellipsoid or rectangular prism. These points are then 
scaled using the anisotropy values in each direction. This two-step procedure can be expressed using a 
series of simplified affine transformation matrices. Given x,y,z values contained in a unit sphere or cube, 
the rotation and scaling using a maximum range according to GSLIB (Deutsch and Journel, 1998) 
conventions is: 
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This transformation is similar to the anisotropy transformation used in variogram computation. The 
determinant of a diagonal matrix is simply the product of the diagonal entries. The weights are rescaled 
by the determinant of the diagonal affine transformation matrix and the points by the rotation matrix.  
 
Specification of the Extended Linear Model of Coregionalization 
The linear model of coregionalization is specified by the covariance functions for each of the structures for 
each regionalized variable and the cross covariances between the variables. Specification of the extended 
linear model of coregionalization differs since it requires the coefficient matrices A and 𝐀�, the covariance 
structures for the underlying variables in addition to the regularization volume and weighting function for 
each of the underlying variables. The resulting covariance model for Z is then fully defined. Calculation 
and plotting of the ELMC has been implemented in the GSLIB-like vmodel_elmc. The parameter file is 
given in Table 1.  
 

Table 1: Sample difference summary file comparing estimation differences for red.dat test case.  
Line Output 
1                 Parameters for VMODEL_ELMC 
2                 ************************** 
3  
4 START OF PARAMETERS: 
5 vmodel_elmc.var              -file for variogram output 
6 2   80                       -number of directions and lags 
7  0.0   0.0    1.0            -azm, dip, lag distance 
8 90.0   0.0    1.0            -azm, dip, lag distance 
9 2    3                       -kvar (observed), mvar (unobserved) 
10 0.05    0.80    0.6          -A matrix coef. (kvar x mvar matrix row k=1) 
11 0.0     0.33    0.14         -A matrix coef. (kvar x mvar matrix row k=2) 
12 0.0    0.0    0.0            -Abar matrix coef. (kvar x mvar matrix row k=1) 
13 0.0    0.5    0.5            -Abar matrix coef. (kvar x mvar matrix row k=2) 
14 0       0.0   0.0   0.0      -it,ang1,ang2,ang3 (covariance function m=1) 
15         0.0   0.0   0.0      - a_hmax, a_hmin, a_vert (m=1) 
16 1       0.0   0.0   0.0      -vt,ang1,ang2,ang3 (volume definition m=1) 
17         0.0   0.0   0.0      - v_hmax, v_hmin, v_vert (m=1) 
18 1  0.0  0.0   0.0   0.0      -wt,wpar,ang1,ang2,ang3 (weight definition m=1) 
19         0.0   0.0   0.0      - w_hmax, w_hmin, w_vert (m=1) 
20 1       0.0   0.0   0.0      -it,ang1,ang2,ang3 (covariance function m=2) 
21        38.0  38.0  38.0      - a_hmax, a_hmin, a_vert (m=2) 
22 1       0.0   0.0   0.0      -vt,ang1,ang2,ang3 (volume definition m=2) 
23         4.0   4.0   4.0      - v_hmax, v_hmin, v_vert (m=2) 
24 1  1.0  0.0   0.0   0.0      -wt,wpar,ang1,ang2,ang3 (weight definition m=2) 
25        10.0  10.0  10.0      - w_hmax, w_hmin, w_vert (m=2) 
26 1       0.0   0.0   0.0      -it,ang1,ang2,ang3 (covariance function m=3) 
27       100.0   50.0 12.0      - a_hmax, a_hmin, a_vert (m=3) 
28 1       0.0   0.0   0.0      -vt,ang1,ang2,ang3 (volume definition m=3) 
29         4.0   4.0   4.0      - v_hmax, v_hmin, v_vert (m=3) 
30 1  1.0  0.0   0.0   0.0      -wt,wpar,ang1,ang2,ang3 (weight definition m=3) 
31        10.0  10.0  10.0      - w_hmax, w_hmin, w_vert (m=3) 

 
Similar to the original vmodel, plotting parameters are specified in lines 6-8. The numbers of observed 
and unobserved variables are specified in line 9. The A matrix is specified in lines 10-11 and 𝐀� matrix in 
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lines 12-13. More lines and values are added in the parameter file to match the M and K values. For m=1, 
the variogram is specified in lines 14-15. Specification of the covariance type follows GSLIB (Deutsch and 
Journel, 1998) conventions, although a structure of 0 is used to specify a nugget effect. Lines 16-17 specify 
the volume regularization function. The volume type, vt, is either 1 (ellipsoid) or 2 (rectangular prism). 
The rotation angles and ranges of the ellipsoid or rectangular prism are then specified. Lines 18-19 specify 
the weighting type, wt, from (9) where the weighting parameter, wpar, is the constant in (9), c. As 
before, the rotation angles and ranges specify the weighting function ellipsoid. This series of 6 lines is 
repeated for m=2 (lines 20-25) and m=3 (lines 26-31).  

A common situation stemming from the use of variables with different support volumes was 
presented in Figure 1. Using vmodel_elmc, these variables were fit (Figure 3). The fit obtained could be 
improved with the use of automatic fitting software; however over short distances the ELMC used fits the 
covariance shape (Gaussian or spherical) very well. The parameter file used is included in the 
accompanying electronic files.  

With such a computationally intensive covariance model, verification that computation times are 
reasonable was necessary. Calculating the full Z covariance matrix one million times took 46 minutes in an 
unoptimized debugging environment. This time could be decreased with compiler and calculation 
optimization.  
 
Conclusions and Future Work 
The ELMC is very promising to address situations where variograms of different shape must be fit. A 
program, vmodel_elmc, has been presented which implements the calculation of covariance functions 
using a specified ELMC. Future work with the ELMC would involve implementation into kriging or 
simulation algorithms and testing with real data sets. A semi-automatic fitting program would also be 
necessary to assist geostatisticians in fitting the large number of matrix coefficients and covariance 
function parameters.  
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Figure 1: Covariance plots for data from a small support volume (Z1), a highly correlated variable with a 

large support volume (Z2) and the cross covariance and associated scatterplot. 
 

 
Figure 2: Regularization volume and weighting function domain sketch and illustration of possible radial 

basis weight functions.  
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Figure 3: Covariance plots for data (red) from a small support volume (Z1), a highly correlated variable 
with a large support volume (Z2) and the cross covariance fit with the extended linear model of 

coregionalization (blue). 
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Appendix: Mathematical Details 
Mathematical details and relevant derivations are presented in this appendix. Additional mathematical 
details are in the extended electronic appendix.  
  
Derivation of Covariance of Z Variables with the Extended Linear Model of Coregionalization 
The covariance matrix of Z can be derived: 
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Derivation of Covariance Integrals 
The variance (1st covariance type) can be expressed in terms of the expected value of 𝑌𝚤�  as: 
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The variable Yi has an expected value (mean) of 0, so it follows that: 
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Also note that the variance of an underlying variable is: 
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Therefore, the variance of the weighted, volume averaged variable can be written in terms of the 
covariance function of the underlying Yi variable: 
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