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Abstract 

Geostatistical modeling of geological bodies for earth sciences applications often 

involves simulation of categorical variables such as facies or rock types. Many geological 

settings have features that are not easily captured and reproduced by traditional 

variogram-based methods. Multiple-point statistics can be used to create realizations of 

geology that better match a conceptual model of geology, also called a training image. 

This dissertation develops a new simulation algorithm, called MPS-GS, using 

multiple-point statistics in a Gibbs sampler framework. The Gibbs sampler is a Markov 

chain Monte Carlo method and is used as a theoretical foundation. MPS-GS is an iterative 

algorithm that visits every location many times, converging on a simulated realization 

resembling the training image using conditional distributions. Multiple-point statistics are 

utilized to determine the conditional distributions. To overcome the problem of 

dimensionality associated with multiple-point statistics, multiple-point events are used. 

The indicators of multiple-point events are nonlinear data that are used in a linear 

estimate similar to indicator kriging. 

Iterative algorithms have a number of computational limitations and problems with 

artifacts. MPS-GS uses modifications to the conditional distributions, noise reduction, 

multiple grids, and a servosystem to reduce the problems associated with iterative 

methods. A number of features are implemented, including automatic convergence 

detection, automatic template creation, and a multiple servosystem approach for 

reproducing locally varying proportions. 



  

Several case studies are considered to demonstrate the effectiveness of MPS-GS. The 

results show visual improvement compared to a traditional geostatistical method, SISIM. 

Lower-order statistics such as indicator variograms are reproduced well by MPS-GS and 

high-order measures such as multiple-point histograms are better reproduced when 

compared to SISIM. The improved visual and statistical quality of the realizations leads 

to a more precise quantification of uncertainty without sacrificing accuracy. 
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1 Introduction 

Mineral resources are important to the Canadian economy. Engineering and geoscience 

methods are used to help decide what resource extraction projects are worth undertaking 

to realize a profit for the operator, royalties for the owner, and minimum environmental 

impact. A part of the decision-making process is determination of the subsurface geology. 

This involves creating one or more models of the geology. In this dissertation a model is 

a geologic description in numerical format at a specified scale for the purposes of 

engineering calculations. Models are created for petroleum reservoirs, ore deposits, or 

other geologic sites that are of interest. 

Due to the incomplete information available about the subsurface, uncertainty in a 

model is inevitable. In this context uncertainty is the probability distribution of possible 

outcomes such as oil or mineral production. Uncertainty occurs because a number of 

valid but different models may be created by the same method by varying input 

parameters such as a random number seed value, simulation path, or spatial statistics. 

Quantifying the uncertainty allows an assessment to be made of the economic feasibility 

and financial risk of a project or specific development strategy. 

Geostatistics is a tool that is used for quantifying subsurface uncertainty and making 

it meaningful for application to mine design, petroleum reservoir evaluation, production 

planning, or other natural resources characterization. 

1.1 Problem Setting 

Models of geologic sites are created over a specified domain. A domain typically ranges 

in size from several hundred metres to several kilometres horizontally and tens to 

hundreds of metres vertically. 
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Creating models of geology involves different rock types or facies and modeling 

them over the domain. Facies are distinguished from one another at the sampling scale by 

grain size, geometry, diagenetic alteration, or some combination of these factors. Each 

facies has distinct subsurface architectural features because of the geological process. 

Examples of distinct geological architectural events are channel sands, levee sands, and 

floodplain shale in fluvial-type deposits; and mineralized veins and non-mineralized host 

rock in ore deposits. 

Categorical models of facies may be constructed in several ways: deterministic 

interpretation by an expert; simulation of geologic bodies or processes meant to mimic 

the formation of the deposit; and simulation by geostatistical methods that use the spatial 

structure inferred from the available data. As an illustrative example, consider the twenty 

data points shown in Figure 1.1. There are three different types of facies typical of a 

fluvial reservoir: an impermeable shale matrix, channel sand, and different quality levee 

sand. 

 

  

Figure 1.1: Twenty facies data typical of a fluvial-type petroleum reservoir. 

 

Expert geological interpretation may yield results that are representative of the 

phenomena under study; however, this approach is neither repeatable nor reproducible. 

Different experts, given the same data, will certainly produce different models. Moreover, 

an expert with the same set of data would not generate the same model twice. It is 

expensive and time consuming to generate many deterministic models, making them 

unattractive as a method to assess uncertainty. Figure 1.2 shows one possible expert 

interpretation of the samples from Figure 1.1. This interpretation reproduces the data and 
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may be plausible, but it would be laborious to create a number of such cases to quantify 

the uncertainty of the deposit. 

 

  

Figure 1.2: An expert geological interpretation of the field containing the twenty data 

shown in Figure 1.1. 

 

Stochastic or random simulation using object-based or process-mimicking techniques 

can produce a number of models or realizations that may be used to assess uncertainty. 

Object-based methods place geometric objects in the domain until the data are reproduced 

and the target proportion of each facies have been reached. Process-mimicking methods 

start with an empty model and populate the domain in a similar way to the actual 

geologic progression. If done properly these methods will give results that are similar to 

the true geology and match what an expert’s interpretation might look like. Object- and 

process-based methods require fine tuning of many parameters, can understate the 

uncertainty, and often have trouble reproducing densely sampled data. Figure 1.3 shows 

two object-based realizations that have the same geologic structure as the expert 

interpretation. It is relatively easy to quickly generate a number of realizations using this 

method, but placing the geo-objects in a random way results in some mismatch to the 

sample data. The mismatches in the example realizations are 15% and 10%. 
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Figure 1.3: Two object-based realizations of the domain containing the Figure 1.1 data. 

Realizations 1 and 2 have mismatch from the sample data of 15% and 10%.  

 

Pixel-based simulation methods such as sequential indicator simulation (SIS) and 

truncated Gaussian simulation are fast, can incorporate many data sources, and use spatial 

statistics that are inferable from sparse data. Second-order spatial statistics such as 

covariance functions or semivariograms are well-defined and have a relatively long 

history of use in geostatistical modeling. The main drawback of this family of techniques 

is that the results do not appear geologically realistic. The simple statistics used do not 

contain enough information to explicitly define the geological structures and geometric 

shapes present. Figure 1.4 shows two realizations that were created using SIS. The spatial 

correlation of the different facies is correct and all of the sample data are reproduced; 

however, the structure does not resemble actual geology as it would be interpreted by an 

expert. While this type of simulation approach is mathematically attractive, the results are 

unrealistic from a geological perspective. Many realizations can be created quickly to 

quantify uncertainty; however, uncertainty from an unrealistic model may not be useful 

for engineering purposes. 
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Figure 1.4: Two SIS realizations of the area containing the data in Figure 1.1. Both 

realizations reproduce all data locations but do not display the correct geological 

structure. 

 

1.2 Proposed Approach 

More sophisticated stochastic simulation methods have been proposed in recent years. A 

number of these methods use what is called multiple-point statistics (MPS). MPS refers 

to spatial moments that are of order greater than two and therefore contain more 

information than covariance functions or semivariograms. The term MPS is also 

sometimes used to refer to methods or families of methods that use these higher-order 

spatial moments. 

The amount of information contained within MPS defines more geologically realistic 

structures than SIS. Rather than inferring the spatial statistics directly from data, MPS are 

derived from a conceptual model of geology called a training image (TI). An expert’s 
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interpretation such as that shown in Figure 1.2 is an example of what could be used as a 

TI. This approach leads to a compromise between ease of simulation and geologic realism 

of the results. A challenge for MPS is how to best extract the MPS from a TI and then use 

them effectively in producing realizations. 

This dissertation proposes a novel method for incorporating MPS in facies 

simulation. The workflow used by the proposed algorithm is as follows: 

 

1. Start with a randomly-populated field on the coarsest grid; 

2. At a random unsampled location: 

a. Calculate the conditional probability of each facies; 

b. Adjust the probabilities to account for secondary information and global 

facies proportions; 

c. Apply noise reduction or cleaning and correct the probabilities to sum to 1.0; 

d. Draw a new facies value from the corrected distribution and assign it to the 

current location; 

e. Move to another unsampled location and repeat Step 2; 

3. After every unsampled location has been visited, check for convergence: 

a. If there is no convergence yet, repeat Step 2; 

b. If the convergence criteria are met, populate the next-coarsest grid and repeat 

from Step 2; 

4. After the finest grid has been simulated write out the results and proceed to the next 

realization if necessary. 

 

Simulation methods that use MPS have several issues to consider. One issue is 

selection of a TI that is representative of the geology in the domain of interest. A great 

deal of information is extracted from a TI; therefore, the appropriateness of a particular 

TI has a large impact on the results. This aspect has been studied elsewhere and will not 

be discussed in detail in this dissertation. 

Another issue is how to extract, store, and use the MPS contained within a TI. Unlike 

traditional geostatistical tools such as the semivariogram, MPS cannot be expressed as a 

simple mathematical function. All spatial relations must be stored and retrieved as 

needed; in sequential simulation methods the infinite possible data configurations can 
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lead to difficulties in inference and storage of the MPS. An iterative framework, called a 

Gibbs sampler, is proposed to simplify the data configuration issue. 

In a Gibbs sampler, all locations are assigned values at the beginning of the 

simulation, so there are no data configuration issues. The algorithm starts with a random 

field reproducing the hard conditioning data and any secondary information, and then 

modifies (or perturbs) facies at locations in the realization using the current state of the 

surrounding locations as conditioning data. Using the theoretical properties of the Gibbs 

sampler, the image should converge to a realization that reproduces the data as well as the 

MPS obtained from the TI. 

The conditional distributions used to perturb the facies at each location could be 

based on a variety of methods as there is no theoretical constraint. A basic concept of the 

Gibbs sampler is that the final image will converge to the statistics that are input to the 

algorithm. Deviations from Gibbs sampler theory that are required for practical 

implementation may affect the theoretical convergence properties of the algorithm. 

The Gibbs sampler put forward in this dissertation will explicitly reproduce facies 

and trend data and utilize the conceptual geological interpretation. The output realizations 

of this algorithm may then be used to quantify the uncertainty in the facies modeling of 

natural resource deposits. This, in turn, improves the assessment of risk inherent to 

projects exploiting these resources. 

There are a number of existing methods that utilize MPS for simulation; there has 

even been commercial implementation. Each method has its own advantages and 

disadvantages and areas of applicability. Most work has focused on one particular method 

and on applying ad-hoc modifications to increase functionality. A different theoretical 

foundation may provide better insights into MPS and expand the field as a whole. 

1.3 Dissertation Outline 

Chapter 2 provides an overview of geostatistical simulation for quantifying uncertainty 

and how this is applied to modeling of categorical variables such as rock types. Different 

methods for modeling of geological bodies are presented. The background and previous 

implementations of MPS are reviewed. The theory of Markov chains and the Gibbs 

sampler is presented. 
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Chapter 3 presents the theoretical underpinnings of the proposed algorithm, 

including its application to geological modeling, the incorporation of MPS into 

estimation of the conditional distributions, and the background of some of the numerical 

methods that are used to accomplish this. 

Chapter 4 covers the implementation issues encountered with the proposed 

algorithm. Artifact prevention, computational speed, selection of a random path, stopping 

criteria, matching of lower-order statistics, and integration of multiple data types are 

some of the topics covered. 

Chapter 5 looks at case studies implementing the algorithm to assess uncertainty in a 

model as it would proceed for a practical project. Three cases are considered: a braided 

channel system; an eolian sandstone; and a petroleum reservoir. 

Chapter 6 gives conclusions with closing discussion on the applications and 

potential for the presented algorithm. 

Appendix A provides a list of the symbols and selected terms used in the 

dissertation. 

Appendix B discusses the FORTRAN code developed to implement the proposed 

algorithm. 
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2 Literature Review 

This chapter presents a background of theory relevant to this thesis and to the 

methodology that will be developed in later chapters. Section 2.1 introduces the concept 

of geostatistical modeling of regionalized variables and explains how this is applied in 

simulation of categorical variables such as facies. Section 2.2 provides an overview of 

multiple-point statistics (MPS), the theory of high-order spatial moments, and application 

to geostatistics. Section 2.3 reviews previous work on the implementation of MPS in 

geostatistics. The background of the Gibbs sampler (GS) is reviewed in Section 2.4. 

2.1 Geostatistical Modeling 

In any earth sciences application there is a limited amount of direct data measurements 

available with which to quantify the phenomena being studied. Small-scale data such as 

core and well log data are used to characterize the spatial structure of the geological 

variables of interest and then the inferred parameters are applied to estimate or simulate at 

the field scale (Chiles and Delfiner, 1999, Deutsch, 2002, Deutsch and Journel, 1998, 

Goovaerts, 1997, Isaaks and Srivastava, 1990, Journel and Huijbregts, 1978, 

Wackernagel, 2003). 

The important variables in geostatistical modeling at an engineering project scale are 

those that control the valuable and/or deleterious characteristics of the resource deposit. 

These variables can include ore grade and concentration of contaminants in hard rock 

mining projects; porosity, permeability, and proportion of shale in oil reservoirs; and 

percent bitumen, sulphur, water, and fine material in oil sands mining deposits. These 

variables affect engineering-related decisions on extraction methods, recovery potential, 

and environmental remediation. The engineering-related variables may be expressed as 

continuous numbers with any possible value, up to the measurement accuracy. The values 
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of these continuous variables must be defined at all locations for engineering purposes. 

Values must be generated by some method at unsampled locations. Geostatistical 

methods use spatial structure inferred from the sample data for prediction. 

The application of interpreted spatial structure to unsampled locations is justified 

through the theory of regionalized variables (RV) (Journel and Huijbregts, 1978). A RV 

is a spatially distributed random variable with some form of correlation or relationships 

between locations. In geostatistics the relation between two locations is most often 

expressed by a covariance or a semivariogram, often shortened to just variogram. The 

variogram is considered easier to infer from sparse data than the covariance, but is 

converted to covariance for use in geostatistical methods. The spatial covariance between 

two locations, separated by lag vector h, of a RV Z, with stationary mean mz, may be 

expressed as: 

 ( ) ( ){ } ( ) ( ){ }, Z ZCov Z Z E Z m Z m   = − ⋅ −   u u + h u u + h  (2.1) 

The variogram value between two locations, u and u+h, can be calculated as: 
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A linear estimate of a RV at unsampled location u, using the n sample data at 

locations ui, i=1,…,n, may be formulated using the equation: 
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where λi is the linear estimation weight assigned to Z(ui), i=1,…,n. 

In Equation 2.3, the residual value of the variable is being estimated; that is, the mean 

mz is assumed to be constant and known and the difference is being estimated. The 

residual of the variable Z(u) can be expressed as Y(u); the residual has a number of useful 

properties that make estimating unknown locations easier: 

 

( ) ( )

( ) ( ){ } ( ) ( ){ }

2 2

0

, ,

z

y

y z

Y Z m

m

Cov Y Y Cov Z Z

σ σ

= −

=

=

=

u u

u u + h u u + h

 (2.4) 

These properties show that Y has the same variance and spatial covariance structure 

as Z. With the mean removed, the calculation of error variance becomes simpler. The 
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variance of the error can be expressed in terms of the linear estimation weights, as 

follows: 
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Equation 2.5 shows the error variance of the estimate as a quadratic function of the 

linear estimation weights. If the covariance structure of the variable Z, and therefore the 

residuals Y, is positive definite then there is a single unique minimum value for the n-

dimensional quadratic function. This minimum may be found by taking the partial 

derivatives with respect to the weights, and then setting the derivatives to zero and 

solving the resulting system of equations: 
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The system of n equations in Equation 2.7 is known as the kriging system of 

equations; the weights found from the solution of this system are called the kriging 

weights and the estimate from Equation 2.3 using those weights is called the kriging (or 

kriged) estimate. This particular form of kriging, with a known mean, is called simple 

kriging. 

2.1.1 Categorical Variables 

In many cases the variables of engineering interest are controlled by categorical facies in 

the deposit, and modeling the facies can improve the predictive power of the model 

(Deutsch, 2002). The facies have different spatial structure than the continuous variables 

and are categorized mathematically into discrete integer values for modeling purposes. 

Each integer value represents one facies that has its own set of properties. The facies can 



12 

be modeled by indicators, or transformed values of zero or one corresponding to the K 

different facies values: 

 ( )
1, if facies  is present at location 

;
0, otherwise

k
I k


= 


u
u  (2.8) 

The indicators are exhaustive and exclusive, meaning that every location has an 

indicator value equal to one and K-1 equal to zero; no location has two non-zero indicator 

values: 
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Indicator transforms of the facies can be viewed as RVs with the mean equal to the 

proportion of facies k and a variance expressible as a function of the mean: 
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The spatial covariance of indicators may also be calculated in a similar way to other 

RVs as in Equation 2.1: 
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In practice the indicator variogram is often calculated instead of the indicator 

covariance; this does not require the global probability of the facies P(k) to be known 

(Deutsch, 2002): 
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γ

σ

 ⋅ = − 

= ⋅ − ⋅

h u u + h

u u + h

 (2.13) 

Under the assumption of second-order stationarity, the indicator covariance may be 

calculated from the indicator variogram (Journel and Huijbregts, 1978): 

 ( ) ( ){ } ( )2; , ; ;
k

Cov I k I k kσ γ= −u u + h h  (2.14) 
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2.1.2 Conventional Facies Modeling Techniques 

There are a number of alternative techniques for stochastic simulation of facies. Some of 

these methods are variogram-based, where the facies categorical values are directly 

simulated pixel-by-pixel; others model geo-objects as geometric shapes; and some 

methods mimic the underlying geologic processes that form resource deposits. 

Variogram-Based Methods 

Simulating cell-by-cell using a variogram/spatial covariance as user-specified structure is 

a popular option for facies modeling for a number of reasons (Deutsch, 2002): 

1. Sample data is explicitly reproduced by these methods; 

2. Variograms/covariances are relatively easy to infer from wells or drillholes; 

3. Secondary data or trends may be incorporated; 

4. The results are realistic in cases where no clear geometries may be inferred 

for the facies. 

There are two main variogram-based methods for simulating categorical variables: 

sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). SIS uses 

the indicator transform in Equation 2.7 to express the facies in a manner that is similar to 

the RV formalism presented earlier. TGS simulates a continuous standard normal variable 

that is then discretized into facies based on thresholds. 

The probability of a facies k at an unsampled location u can be found by using a 

linear estimate of indicator data: 

 ( ) ( ) ( ) ( )*

1

; ;
n

i

i

I k I k P k P kλ
=

 = ⋅ − + ∑ i
u u  (2.15) 

This is the same linear estimate as in Equation 2.3. Minimizing the error variance of 

the estimate leads to the simple indicator kriging system of equations: 

 ( ) ( ){ } ( ) ( ){ }
1

; , ; ; , ;    1, ,
n

j

j

Cov I k I k Cov I k I k i nλ
=

⋅ = =∑ i j iu u u u …  (2.16) 

The covariances in the system of Equations 2.16 are the indicator covariance as 

defined in Equation 2.12. Using this approach, the probability of each facies may be 

calculated at an unsampled location. A value could be drawn from the conditional 

distribution by Monte Carlo simulation. The SIS algorithm then proceeds to the next 

unsampled location on a random path and uses both the sample data and previously-
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simulated locations as conditioning data. One of the most well-known implementations of 

SIS is the SISIM program (Deutsch and Journel, 1998). An example of a three-facies SIS 

realization is shown in Figure 2.1. 

 

  

Figure 2.1: A realization of three facies created using SISIM (Deutsch and Journel, 1998). 

 

The TGS method uses a Gaussian realization of a continuous standard normal 

variable and discretizes the values based on a series of thresholds into facies categories. A 

common Gaussian simulation algorithm is sequential Gaussian simulation (SGS). The 

idea of SGS is to sample conditional distributions in sequence and generate realizations 

that honour the spatial covariance structure and univariate statistics; kriging estimates do 

not reproduce these statistics (Chiles and Delfiner, 1999, Deutsch, 2002, Journel and 

Huijbregts, 1978, Goovaerts, 1997, Isaaks and Srivastava, 1990, among others). 

A common software program that implements SGS is SGSIM (Deutsch and Journel, 

1998). An example of a RV simulated using SGSIM is shown in Figure 2.2. 
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Figure 2.2: A SGS realization of a standard normal RV created using SGSIM (Deutsch 

and Journel, 1998). 

 

Once a RV with a standard normal distribution has been simulated with SGS or by 

another method, the realization is discretized into facies categories by applying 

thresholds. The values within each range are assigned the same facies value. An example 

of this is shown in Figure 2.3. The thresholds can be specified by the target global 

proportions for each facies. The resulting realization displays clear ordering of the facies; 

an example is shown in Figure 2.4. 

 

  

Figure 2.3: A standard normal distribution partitioned into three facies codes for TGS. 
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Figure 2.4: A TGS realization created using the SGS realization in Figure 2.2, the 

thresholds in Figure 2.3, and the GTSIM program (Deutsch and Journel, 1998). 

 

Variogram-based (or covariance-based) methods have become ubiquitous in modern 

geostatistics due to the relative ease of calculating variograms from sparse data and the 

simplicity of the Gaussian formalism. From a facies modeling perspective, these methods 

have drawbacks: SIS produces images that are patchy and TGS shows distinct ordering of 

facies that amounts to a significant modeling decision. 

Object-Based Modeling 

As an alternative to variogram-based simulation of facies is to insert entire geo-objects 

into the simulated field. This approach is called object-based modeling (Allard et al, 

2004, Deutsch, 2002, Deutsch and Wang, 1996, Holden et al, 1998). Petroleum reservoirs 

made up of fluvial channels and associated features, particularly those reservoirs located 

in the North Sea, are a common type of model to be constructed using object-based 

methods. 

The strengths of object-based models are that they can create realistic-looking 

realizations, can account for complex interactions between facies structures, and 

successfully reproduce long-range curvilinear connectivity that cannot be captured by 

variogram-based methods. 

One drawback of object-based modeling is the reliance on user-specified parameters 

for the geological setting, relevant object types, and geometry of the objects. Object-

based methods also have difficulty honouring dense well data. 
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Event-Based Methods 

Variogram- and object-based methods for simulating geological facies have the drawback 

of being very dependent on user-defined parameters for the spatial relations and structure. 

The variogram model and object parameters specify the structure so that the only 

variations in the realizations are ergodic fluctuations (unless parameter uncertainty is 

expressly accounted for). Event-based methods simulate the physical formation of 

geology based on the progression seen in nature (Cojan et al, 2004, Pyrcz, 2004, Pyrcz 

and Deutsch, 2004). 

For fluvial depositional systems, this entails simulating streamlines to represent the 

central axes of channels. The streamlines are then modified and operated on to create 

further architectural elements of the depositional system such as abandoned channel fill, 

crevasse splays, and levees. 

To simulate deepwater depositional systems, surface- or flow-based events are used 

(Pyrcz, 2004, Pyrcz et al, 2005). Successive surfaces representing sedimentary 

accumulations are simulated by stochastically choosing the source location for the flow 

events, the path for the deepwater flow, and the geometry of the individual events. The 

resulting surface architecture is used to assign facies such as turbidite lobes and shales. 

2.2 Multiple-Point Statistics 

Variogram-based methods cannot reproduce complex geologic features. Object- and 

process-based methods are more sophisticated in their ability to construct realistic models 

but have difficulty integrating data, are limited in application to certain geologic 

scenarios, and involve significant fine tuning of parameters. Multiple-point statistics are 

an attempt to use produce realistic-looking realizations in a pixel-by-pixel manner. 

The idea of using non-Gaussian models for spatial statistics was first proposed by 

Journel and Alabert in 1989. In 1992 and 1993 the first practical algorithm for MPS 

simulation of facies was proposed by Guardiano and Srivastava. Other early 

implementations of MPS include Deutsch, 1992, and Srivastava, 1992. 

Multiple-point statistics include spatial moments or probabilities involving more than 

two locations. It is difficult to express these statistics in the form of functions like the 

covariance or variogram. Two types of MPS that may be expressed in some analytical 

form are the multiple-point histogram and connectivity functions; those two statistics will 
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be discussed below. Also of relevance to MPS are the concepts of training images and 

dimensionality. Practical applications of MPS to geostatistical problems will be 

discussed. 

2.2.1 Multiple-Point Histograms 

The multiple-point histogram (MPH) is an extension of the univariate histogram. A MPH 

is the probability or frequency of all possible combinations of a set of indicators at many 

locations simultaneously. In most uses this means categorical variables such as facies but 

continuous variables divided into thresholds could be expressed in a MPH as well. 

The value of a MPH class is the joint probability of N indicators occurring 

simultaneously at a defined set of N locations, un. For k=1,…,K facies and n=1,…,N 

points, this is:  

 
( )1 2

1

, ,

, 1, ,

N

N

P k k k

k k K

= = =

∀ =

1 2 Nu u u…

… …
 (2.17) 

There are K
N
 classes in a MPH. The MPH has been a central idea of MPS methods 

since the first algorithms were proposed. In the cases where a MPH is explicitly used 

(Boisvert, 2007, Deutsch, 1992, Ortiz et al, 2006, Wang, 1996), a one-dimensional index 

is assigned to each combination of facies: 

 ( ) 1

1

1 1
N

n

n

k n Kα −

=

 = + − ⋅ ∑  (2.18) 

α is the index, N is the number of points in the template, k(n) is the facies value at 

point n, and K is the total number of facies values. The indices are assigned from 

α=1,…,K
N
. The facies, points and indices can be rearranged to count from zero instead of 

one with no practical changes. An example of a MPH template and the corresponding 

patterns is shown in Figure 2.5. The template is 2x2 pixels for a total of four points; there 

are two indicator values, white (one) and black (two); the total number of classes is 

K
N
=16. 
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Figure 2.5: An example of a four-point MPH template and patterns with two indicator 

values. 

2.2.2 Connectivity Functions 

Indicator covariances and variograms were defined above in Equations 2.12 and 2.13. 

They quantify the probability of two points separated by a given lag having the same 

facies value. They are two-point statistics and deal only with the locations at either end of 

the lag vector h. These relations can be extended to the N-point case (Deutsch, 2002, 

Journel and Alabert, 1989) for facies k and a given arrangement of points un: 

 ( ) ( )
1

; ;
N

n

k N E I kφ
=

 
=  

 
∏ nu  (2.19) 

This N-point statistic is called a connectivity function; it is the probability of all 

points in the template having the indicator value k. Typically the template for a 

connectivity function is a straight line and so the arguments in Equation 2.19 can be 

simplified to a vector of length N in a specified direction. A straight-line connectivity 

function has been explored in several sources and is sometimes referred to as runs 

(Boisvert, 2007, Ortiz, 2003, Ortiz and Deutsch, 2004). 

The connectivity function has also been extended by Krishnan and Journel, 2003, to 

include curvilinear connectivity. This concept captures the nonlinear nature of many 

geological features such as fluvial channels or ore veins. 
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2.2.3 Training Images 

Most MPS methods use spatial statistics that are too complex to infer directly from sparse 

sampling data. For this reason, training images (TIs) are used. A TI is a fully-populated 

model that is representative of the conceptual geology of the area under study, and can be 

viewed as the prior model of spatial structure (Journel, 2006). By using a TI any statistics 

that are needed for a stochastic algorithm may be inferred, even third-, fourth-, or higher-

order spatial moments. Figure 2.6 shows an example of a typical TI for a two-

dimensional braided channel system. 

 

  

Figure 2.6: A channel-type TI (Journel, 2004, Liu, 2006, Strebelle, 2002, among others). 

 

Using a TI for statistical inference has several advantages over alternative function-

based methods: there is no grouping or averaging of scattered data into lags; there is no 

assumption of Gaussian spatial structure; and, complex relations between facies may be 

calculated. A TI is a subjective choice; however, a TI could be refuted by a qualified 

geomodeler, whereas an inferred variogram is much more difficult to dispute on 

geological grounds (Journel, 2004). 

2.2.4 Dimensionality 

The main reason for using higher-order spatial moments is to increase the information 

content of the statistics and thus the complexity of the geology that may be characterized 
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and reproduced in stochastic algorithms. However, as the order of the statistics increases 

the dimensionality of the problem becomes an intractable problem. 

In geostatistical facies modeling the order of the statistics is equal to the number of 

categories raised to the power of the number of points in the statistics, or K
N
. As the 

number of facies increases the order or dimension increases very rapidly; an example of 

this is shown in Table 2.1. The order of the statistics is also the total number of classes in 

the MPH. 

 

Table 2.1: Dimension of statistics characterizing K facies and N points. 

 

K=2 K=3 K=4 K=5 

N=1 2 3 4 5 

N=2 4 9 16 25 

N=3 8 27 64 125 

N=4 16 81 256 625 

N=5 32 243 1,024 3,125 

N=10 1,024 59,049 1,048,576 9,765,625 

N=15 32,768 14,348,907 1,073,741,824 30,517,578,125 

N=20 1,048,576 3,486,784,401 1,099,511,627,776 95,367,431,640,625 

 

Multiple-point statistics typically use ten or more points and we would like to go 

as high as a hundred points or more. From Table 2.1 it is obvious that the 

dimensionality of these statistics becomes unwieldy. This issue is mitigated by the 

fact that nearly any desired statistics can be calculated from a TI; however, when the 

order of the MPS exceeds the size of the TI the inferred statistics may be unreliable. 

2.2.5 Applications of MPS 

There have been a number of applications of MPS methods in geostatistical modeling. 

MPS originated in the petroleum industry, where interest in global uncertainty has driven 

the development of algorithms and commercial software. Applications of MPS to 

reservoir modeling may be found in Strebelle et al, 2002; Strebelle et al, 2003; Maharaja, 

2004; Strebelle, 2005; and Zhang et al, 2006a. Integration of MPS simulation with 

methods for history matching of production data is described in Caers, 2003 and Hoffman 

et al, 2005. 
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Non-petroleum applications of MPS methods have also been published. The use of 

MPS in a mining setting is discussed in Ortiz, 2003 and Ortiz and Deutsch, 2004. The 

potential use of MPS in other mining settings is discussed in Boisvert, 2007. 

Okabe and Blunt, 2004 and 2005 apply MPS simulation to pore space reconstruction 

at a scale of micrometers to millimeters, in a variety of settings such as petroleum, 

environmental, and groundwater flow. 

2.3 MPS Algorithms 

Since the introduction of MPS as a field of geostatistics, there have been a number of 

algorithms proposed and/or implemented that use higher-order spatial moments inferred 

from TIs for facies modeling. The algorithms are divided here into three categories: the 

single normal equation approach using direct inference of conditional distributions; 

Markov chain Monte Carlo algorithms; and pattern-based methods. 

2.3.1 Single Normal Equation 

The original concept for reproducing high-order structure in geologic realizations was 

proposed by Guardiano and Srivastava in 1992 and 1993. The algorithm used for this 

approach is a sequential simulation method with a similar workflow to SIS; however, 

when determining the probability of each facies k at an unsampled location u given the 

surrounding indicator data D a single normal equation (SNE), or Bayes’ Law, is used 

instead of IK: 

 ( )
( )

( )
; |

P k D
P k D

P D

∩
=u  (2.20) 

In Equation 2.20 the numerator is the probability of both k and D occurring 

simultaneously and the denominator is the probability of D occurring regardless of the 

value at u. These probabilities are calculated directly from a TI of size nxyz by counting 

the number of times, n, each configuration occurs: 
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Figure 2.7 shows an example of the SNE as it is used to calculate the conditional 

probabilities of three facies using five data. The “?” value is the unsampled location to be 
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populated. The numerators in the SNEs are six-point statistics (N=6) and the 

denominators are five-point statistics (N=5). All of the joint probabilities shown in the 

equations in Figure 2.7 could be calculated directly from a TI given the arrangement of 

data locations and the facies values. 
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Figure 2.7: An example using the SNE equation to calculate conditional distributions 

using MPS. 

 

In the original implementation by Guardiano and Srivastava the TI was scanned at 

each unsampled location to find the values for Equation 2.21. This caused the algorithm 

to be very slow for large TIs and ultimately impractical. An important advancement of 

the SNE method was made when Strebelle used the concept of search trees to store facies 

configurations from the TI while only scanning the TI once (Strebelle and Journel, 2000, 

Strebelle and Journel, 2001, Strebelle, 2002). This method was named SNESIM by 

Strebelle and this term is now used to describe the different versions of the SNE 

approach. 

Significant research effort has been put into the SNESIM workflow. Implementation 

aspects and parameter uncertainty were explored in several publications (Liu, 2006, 

Zhang, 2002). Integration of secondary data such as seismic has been explored and 

implemented (Strebelle, 2005, Strebelle et al, 2002, Strebelle et al, 2003). Dynamic data 

integration has been put into practice by way of history matching (Caers, 2003, Hoffman 

et al, 2005). Hierarchical simulation of facies reduces the effective value of K and hence 

helps with the problem of dimensionality (Maharaja and Journel, 2005). 
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2.3.2 Markov Chain Monte Carlo Methods 

Iterative methods for geostatistical simulation have been used in a number of cases. As 

opposed to sequential simulation methods, iterative algorithms have no data configuration 

issues; do not require a search of scattered data; and do not require solving a system of 

equations or looking up spatial statistics from a table or search tree at every unsampled 

location. However, iterative methods can produce artifacts near conditioning data; have 

issues with edge effects; and require sometimes subjective stopping criteria. 

There have been three different iterative simulation algorithms developed to some 

extent that use MPS for facies simulation. All of these algorithms use some form of 

Markov chain Monte Carlo (MCMC) method (Robert and Casella, 2004) as a theoretical 

background. The three MCMC algorithms that have used MPS are simulated annealing, 

the Gibbs sampler, and a neural network in a Metropolis-Hastings algorithm. 

Simulated Annealing 

Simulated annealing (SA) is an optimization method that minimizes an objective function 

to match a set of target statistics (Deutsch, 1992). The objective function is representative 

of the energy state of the realization; in physical annealing, heated metal is cooled slowly 

until crystals form in a near-optimal manner with minimum energy. For MPS simulation 

the objective function may be set as the sum of the square differences between the MPH 

of the TI and the current MPH of the simulated realization: 

 ( ) ( )
2
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TI SIMO P P
α

α α
=

 = − ∑  (2.22) 

The SA algorithm proceeds by visiting all unsampled locations along a random path. 

Every location is assigned a value, whether hard conditioning data, a randomly-chosen 

facies, or a previously simulated value. A new facies is selected for the unsampled 

location; then, the new value is accepted with the probability: 

 ( ) min 1,exp
O

P accept
T

∆ 
= − 

 
 (2.23) 

The T parameter in Equation 2.23 is a control temperature that is analogous to the 

temperature of heated metal in annealing. If the objective function is lowered the change 

is always accepted and the simulation moves closer to the target statistics. If the objective 

function is raised, there is a chance that the simulation will move farther away from the 



25 

target to a less-optimal solution; this allows the algorithm to avoid local minima that may 

trap greedy optimization methods. The temperature is lowered as the simulation proceeds 

until the objective function cannot be lowered any further from the current state. 

Gibbs Sampler 

The Gibbs sampler is a statistical resampling algorithm used to draw samples from 

complex multivariate joint distributions using only the conditional distributions (Geman 

and Geman, 1984, Casella and George, 1992). A geostatistical Gibbs sampler starts with 

a field, fully-populated with conditioning data or random values, and visits every 

unsampled location in a random path. At each location the conditional probabilities of the 

facies is calculated based on the current state of the nearby locations; then a new value is 

drawn from this distribution and assigned to the unsampled location. 

This concept was implemented by Srivastava, 1992, using ordinary IK (Deutsch, 

2002) to determine the conditional distributions. The Gibbs sampler algorithm was found 

to be ten times faster than SIS for simulation of a two-dimensional binary sand/shale 

reservoir. The application of MPS in the Gibbs sampler was also briefly explored using a 

SNE to determine the conditional distributions. The use of MPS allowed reproduction of 

complex structure that was not possible using only second-order statistics. However, the 

idea was not explored any further. This previous work by Srivastava was the inspiration 

behind this thesis. 

Neural Networks 

A neural network (NN) is a programming method that is widely used in optimization 

(Chong and Zak, 2001). The idea behind NN is to use a number of simulated “neurons” 

in several layers to produce non-linear output values. Each neuron has an “activation 

function” that specifies its output based on the input variables. The combination of the 

neurons and their activation functions produces a complex system that accounts for many 

interactions. The optimal parameters for the activation functions are found by training on 

known data, such as a TI – making NN a natural fit for MPS. The use of a NN system in 

MPS simulation was first proposed by Caers and Journel in 1998 and further developed 

in Caers, 2001. An example of a simple NN for geostatistical simulation is shown in 

Figure 2.8. The example has three layers: an input layer with three facies data, a hidden 
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layer with four neurons, and an output layer that produces the conditional facies 

probabilities at an unsampled location. 

 

  

Figure 2.8: An example of a simple neural network with eight neurons and three layers 

(input layer, hidden layer, output layer). 

 

The NN algorithm as implemented by Caers and Journel, 1998, and Caers, 2001, is 

an iterative simulation method that uses a Metropolis-Hastings accept/reject step 

(Metropolis et al, 1953, Hastings, 1970) to ensure the final simulated image honours the 

input statistics determined from the TI. In this type of algorithm a new facies (not equal 

to the current state of the unsampled location) is proposed. The value at that location is 

then changed to the proposal value with the probability: 
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If the change is rejected then the facies value is left the same. The algorithm moves to 

the next unsampled location and repeats the process. 

2.3.3 Pattern-Based Geostatistics 

The MPS algorithms mentioned previously visit all unsampled locations and use nearby 

data as high-order information to produce a probability distribution for the single location 
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being considered. There has been a movement in recent year towards taking entire 

patterns from the TI and inserting them into the simulated field (Journel, 2004). In this 

instance a pattern is a group of cells with a specific structure; structures seen a number of 

times in a consistent and repeating TI are the patterns that should be seen in a geological 

model reproducing the features of that TI. There have been three pattern-based MPS 

simulation methods developed: Growthsim (Eskandaridalvand, 2008), SIMPAT (Arpat 

and Caers, 2007), and Filtersim (Zhang et al, 2006b). 

Growthsim 

The original implementation of the Growthsim algorithm was not pattern-based, but used 

MP configurations of data to assign new facies values at unsampled locations (Wang, 

1996). All unsampled locations are assigned as the “background” or most “unimportant” 

facies (i.e. shale, non-mineralized zone). The locations immediately next to the existing 

facies of importance (i.e. channel sands, ore veins) are then visited and the conditional 

probability of changing facies calculated using a SNE with probabilities calculated from 

the TI. One pixel at a time is then changed to the net or “important” facies, thus 

“growing” the geo-objects. 

Further development of the Growthsim idea has been performed by 

Eskandaridalvand, 2008. This more recent implementation of the Growthsim method uses 

a similar approach, but does not assign the background values initially, rather proceeding 

in a fully sequential manner. The uninformed locations near conditioning data (samples 

or previously simulated) are visited and the TI is scanned to determine which patterns 

match the existing values; one of those patterns is then selected using a SNE and inserted 

into the simulated field. An example of this algorithm is shown in Figure 2.9. 
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Figure 2.9: An example of the Growthsim algorithm. Clockwise from left: Data locations 

with the template size and possible locations shown; pattern inserted into the simulated 

field; state of the realization after several more patterns have been inserted. 

SIMPAT 

A sequential algorithm designed to use the concept of patterns for MPS simulation was 

developed by Arpat and Caers, 2004 (see also Arpat and Caers, 2007). This method is 

called SIMPAT (SIMulation using PATterns). The workflow begins by visiting an 

unsampled location on a coarse grid near conditioning data or previously-simulated 

values. A pattern on a coarse or “primal” template is then selected from the TI based on 

the data and a pattern is inserted using a finer or “dual” template. 

Figure 2.10 shows an example of this workflow. The use of primal and dual 

templates reduces the dimension of the patterns to be selected; the patterns are chosen 

based on the coarse primal template, which in the example has 16 points (N=16). The 

dual template that is inserted into the image has more points and therefore contains finer 

structure; in the example the dual template has 64 points (N=64). 

 



Figure 2.10: An example of t

primal template pattern; dual template pattern.

Filtersim 

One of the most pressing problems with pattern

of the spatial moments represented by TI patterns (the 

SIMPAT reduces the dimension by using primal and dual templates. An alternate 

approach put forth by Zhang et al in 2004 is to use “filters” to reduce a large template (

between 10 and 100) to a smaller number of values, or “sco

filters are shown in Figure 2.11. Patterns in the TI with similar scores for every filter are 

grouped together in the same “prototype” pattern.

 

Figure 2.11: An example of three possible filters for classification of patterns in Filtersim.

 

The Filtersim algorithm proceeds at an unsampled location by searching for nearby 

data and finding the prototype pattern or patterns that match the filter score

the closest; from these prototypes one is selected and then a single pattern within that 

prototype is patched in to place in the simulated field. This process is repeated until all 

unsampled locations have been populated. An example of the Fi

shown in Figure 2.12. 
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Figure 2.10: An example of the SIMPAT workflow. Left to right: Conditioning data; 

primal template pattern; dual template pattern. 

One of the most pressing problems with pattern-based geostatistics is the high dimension 

of the spatial moments represented by TI patterns (the problem of dimensionality). 

SIMPAT reduces the dimension by using primal and dual templates. An alternate 

approach put forth by Zhang et al in 2004 is to use “filters” to reduce a large template (

between 10 and 100) to a smaller number of values, or “scores”. Examples of three 2D 

filters are shown in Figure 2.11. Patterns in the TI with similar scores for every filter are 

grouped together in the same “prototype” pattern. 
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Figure 2.12: An example of the Filtersim workflow. Left to right: Conditioning data; 

pattern prototype; pattern from TI. 

 

Since the original publication of Filtersim, there has been significant further 

development of the algorithm; see Wu et al, 2008a, Wu et al, 2008b, Zhang et al 2006a, 

and Zhang et al, 2006b. 

2.4 Gibbs Sampling 

The concept of Gibbs sampling originated in the field of image processing (Geman and 

Geman, 1984) and was first derived as a variation of the Metropolis-Hastings algorithm 

(Metropolis et al, 1953, Hastings, 1970). The Gibbs sampler uses the concept of Markov 

chains to produce random values from complex multivariate joint distributions that 

cannot be simulated directly, without having to use (or even know) the posterior density 

function (Casella and George, 1992, Gelfand and Smith, 1990, Smith and Gelfand, 1992). 

This section explains the background of Markov chains and Markov chain Monte 

Carlo (MCMC) methods that were mentioned in Section 2.3.2 as the basis for some MPS 

algorithms. The Gibbs sampler method is explained for the two-dimensional case and for 

the extension to the multivariate case. 

2.4.1 Markov Chains 

A Markov chain is made up of a number of values for a random variable as it changes in 

time. The value (or state) of a Markov chain, X, at a given point in time, t, is dependent 

upon the past values of the chain; the specific property of interest for a Markov chain is 

the Markov property. The Markov property is that the next state depends only on the 

current state; the history can be ignored without affecting the results. The Markov 

property can be expressed mathematically as: 
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 ( ) ( )1 1 1 0 1| , , , , |t t t t tP X X X X X P X X+ − +=…  (2.25) 

In Equation 2.25, Xt is the state of random variable X at time t. All previous values for 

time less than t can be disregarded due to the Markov property. 

The values a random variable can take are collectively called the state space (Robert 

and Casella, 2004). A state space can be finite or infinite, continuous or discrete, and of 

any dimension. This thesis will consider primarily finite and discrete state spaces; 

geostatistical facies models have both of these properties. 

A Markov chain can be thought of as exploring the state space by visiting one state 

after another. The movement from state to state is expressed by a transition probability 

(Lawler, 2006). Figure 2.13 shows and example of a one dimensional discrete state space 

over the integers -10 through +10. A Markov chain on this state space could take 21 

different values. 

 

  

Figure 2.13: An example of a one dimensional discrete state space over the integers -10 

through +10. 

Exploration of the State Space 

Markov chains take values in the state space and move about the state space in a manner 

that is controlled by the transition probabilities, that is, the probability of moving from 

any given state to any other state. A transition probability from state α to state β in a 

single step can be expressed in the form (Robert and Casella, 2004): 

 ( )1 |t tP X X a Pαββ+ = = =  (2.26) 

The rules and probabilities governing the movement of a Markov chain about its state 

space, taken collectively, are referred to as a “transition kernel” (Robert and Casella, 

2004). For finite and discrete state spaces the transition kernel can be expressed as a 

matrix containing all of the transition probabilities: 

 ( )1 |     ,t tP X X Pαββ α α β+

 
 = = = ∀ 
  

 (2.27) 

-10 0 +10 
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To determine the probability of moving from state α to state β in a given time t, the 

transition matrix can be raised to the power t (Lawler, 2006): 

 ( )0|

t

t

tP X X P Pαβ αββ α

 
 = = = =  
  

 (2.28) 

The movement of a Markov chain from state to state can be thought of as exploration 

of the state space. If the chain can move directly from one state to another in a single time 

step (Pαβ >0), they are said to be neighbouring states. If a Markov chain can move from 

one state to another in any given time t with a non-zero probability (P
t
αβ>0), then the two 

states are said to be in communication, or communicating states. If all states in the space 

are in communication, then the Markov chain is referred to as irreducible. If not all states 

in a space communicate, they can be grouped into distinct communicating classes where 

the chain cannot move from one class to another. In those cases the initial state becomes 

an important consideration. 

Convergence Properties 

A property that makes Markov chains interesting for a number of applications is the 

limiting distribution. Over a long period of time the current state of the Markov chain will 

tend to be certain values more often than others. The likelihood of one state over another 

is controlled by the transition kernel. At a large enough time, the probability distribution 

over all of the states will approach a limiting distribution; the limit distribution may or 

may not be explicit from the transition kernel, and could be unknown. 

Using the transition matrix Pαβ it is possible to analytically determine the stationary 

distribution of a Markov chain (if it exists) by solving the system of equations (Lawler, 

2006): 

 [ ] P Pα αβ αβπ

   
   =   
      

 (2.29) 

In Equation 2.29 π is the stationary limiting distribution for all states α that are in the 

state space. Equation 2.29 shows that at some large time the probability of being in any 

individual state no longer changes as time increases, thus the distribution is stationary. As 

an alternative to solving Equations 2.29 it is possible to take the limit (Lawler, 2006): 
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 [ ] [ ]lim

t

t
Pα α αβπ ϕ

→∞

 
 =  
  

 (2.30) 

The probability vector φ is any initial state. This will produce the same results as 

solving Equations 2.29. Irreducible Markov chains will reach the stationary distribution 

regardless of the initial state; however, a distribution of initial states may need to be 

considered for Markov chains that have separate classes. 

States that have stationary values greater than zero are called positive. A state α is 

called “recurrent” if a return to that state in a finite amount of time is certain, that is, the 

probability of the time to return to α being finite is one. Equivalently, the expected 

number of visits to a recurrent state over a large amount of time is infinite. For chains 

with finite state spaces all positive states are recurrent and vice versa. If a state is not 

recurrent then it is said to be “transient”, that is, at some point the chain can be expected 

to leave that state and never return. 

In a finite state space communicating classes of states are always positive and 

recurrent. If the initial state, X0, is in one of those classes the chain will remain in that 

class and never escape; this severely limits the exploration of the state space. If the initial 

state is in a transient class it may explore the space for a large number of iterations before 

entering a communicating class, but will eventually leave the transient states and explore 

only a single class of recurrent states. 

For certain cases a Markov chain can be used to produce samples from a limiting 

distribution that is difficult to define or simulate from, and this is where MCMC methods 

have found favour. If the state space is finite but exceedingly large it is not possible to 

solve Equations 2.29 for the stationary distribution. For example, in a geomodel there is 

often on the order of 10
6
 cells; for three possible facies values there are then 

3
1,000,000

≈10
477,121

 states in the space. While finite, this is exceptionally large and most 

states are transient as there is a certain geologic structure to be expected and those that 

vary greatly from this structure are impossible. Ensuring that the entire state space is 

sampled requires a random starting state. 

Example: 1D Random Walk 

A simple example of a Markov chain is known as a random walk (Lawler, 2006, Robert 

and Casella, 2004). A random walk is a simple exploration of a state space where the 
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Markov chain can move to any adjacent state from the current one, and satisfies the 

equation 

 1t t t
X X ε+ = +  (2.31) 

If the epsilon values in Equation 2.31 are independently generated then the sequence 

of variables Xt is a random walk (Robert and Casella, 2004). An example of this is a 

simple coin-flipping game where the player wins a dollar every time a heads is flipped 

and loses a dollar every time tails is flipped: 

 1

1 if heads

1 if tails

t

t

t

X
X

X
+

+
= 

−
 (2.32) 

This coin-flipping game is a 1D random walk Markov chain; the first example has an 

infinite state space consisting of all the integers. The initial state is X0=0 and the value of 

the chain at any time may be seen as the profit (if positive) or loss (if negative) of the 

player. Other cases have been considered elsewhere such as unfair coins (Robert and 

Casella, 2004). Examples of the values of four random walk coin-flipping games are 

shown in Figure 2.14. 

 

  

Figure 2.14: An example of a simple one-dimensional random walk in the form of a coin-

flipping game. Four Markov chains are shown. 
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At a large time the values of the coin-flipping game will approach a Gaussian 

underlying stationary distribution; simulating a large enough sample size of this random 

walk will make this clear. Figure 2.15 shows a histogram of the value of 50 coin-flipping 

games after 20 flips. 

 

  

Figure 2.15: A histogram of the values of 50 coin-flipping games after 20 flips (t=20). 

 

If the coin-flipping game is modified such that the player either goes bankrupt at -10 

or stops playing and keeps the winnings at +10 the state space includes only the 21 

integers from -10 to +10, as shown in Figure 2.13. With a finite and discrete state space 

the transition kernel can now be expressed as a matrix, as shown in Figure 2.16. There are 

21 states and thus the matrix is 21x21; from each state there is a 50% chance of moving 

to a higher value and a 50% chance of moving to a lower value, with no chance of staying 

the same or moving more than one at a time. The states at -10 and +10 are called 

absorbing states because they do not allow the chain to move once it has reached those 

values. 
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Figure 2.16: Transition matrix of the finite state space coin-flipping game. All values not 

shown are zero. 

 

The system of Equations 2.29 that give the stationary distribution of this Markov 

chain is singular; the viable solutions are any states that satisfy 

 
10 10 1.0

0.0,     10, 10i i

π π

π
− ++ =

= ≠ − +
  (2.33) 

Using Equation 2.30 and an initial state of X0=0 (or φ0=1, φi≠0=0 in vector form), 

taking the limit given the stationary distribution 

 [ ]0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5π =   

This solution satisfies Equations 2.29 and suggests that in a coin-flipping game with 

absorbing states that are equal distances from the initial state, the game will eventually 

end up at -10 or +10 with equal probability. Using different initial states from -10 to +10 

and taking the limit in Equation 2.30, the probability of the player going bankrupt (X=-

10) or winning (X=+10) can be calculated. Table 2.2 shows the results for all 21 initial 

states. 
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Table 2.2: Probability of bankruptcy or winning from each initial state in the finite coin-

flipping game. 

Initial State P(Bankrupt) P(Winner) 

-10 1.0 0.0 

-9 0.95 0.05 

-8 0.90 0.10 

-7 0.85 0.15 

-6 0.80 0.20 

-5 0.75 0.25 

-4 0.70 0.30 

-3 0.65 0.35 

-2 0.60 0.40 

-1 0.55 0.45 

0 0.50 0.50 

+1 0.45 0.55 

+2 0.40 0.60 

+3 0.35 0.65 

+4 0.30 0.70 

+5 0.25 0.75 

+6 0.20 0.80 

+7 0.15 0.85 

+8 0.10 0.90 

+9 0.05 0.95 

+10 0.0 1.0 

 

The significant result demonstrated in Table 2.2 is that when there are a large number 

of transient states and several distinct communicating recurrent classes, the initial state is 

an important consideration. 

2.4.2 Two-Dimensional Gibbs Sampler 

A GS can only be used for multidimensional variables; the simplest form of the Gibbs 

sampler is the two-dimensional case. A two-dimensional Gibbs sampler selects the next 

state in the chain by changing one dimension of the variable conditional to the other 

dimension. If the two dimensions of a variable are x and y, then a two-dimensional Gibbs 

sampler proceeds as follows: 

 
( )

( )
1

1 1

|

|

t t

t t

x f x y

y f y x

+

+ +

=

=
 (2.34) 

The two-dimensional Gibbs sampler has a number of interesting properties as a 

Markov chain. Each dimension of the Gibbs sampler chain, X and Y, form Markov chains 



38 

of their own; that is, Xt+1 is independent of all X before time t and  Yt+1 is independent of 

all Y before time t (Robert and Casella, 2004). Both subchains will converge as the 

overall bivariate chain converges. 

Example: Bivariate Gaussian Distribution 

To demonstrate a two-dimensional Gibbs sampler, consider the case of a bivariate 

Gaussian distribution in the variables X and Y. The conditional distributions for the 

variables are: 

 

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

2

2

2

2

2 1

2

2

2 1

2

2

| ,1
2 1

| ,1
2 1

x y

y x

e
f x y N y

e
f y x N x

ρ

ρ

ρ

ρ

ρ ρ
π ρ

ρ ρ
π ρ

−
−

−

−
−

−

= − =
−

= − =
−

 (2.35) 

The initial state for this example is (X,Y)=(0,0). Three chains were run from this 

initial state to time t=1000 with a correlation coefficient ρ=0.5. Convergence for this 

Markov chain means that the chain values at a large enough time should approximate 

samples from the underlying bivariate distribution; all of the values of the chain taken 

together should therefore show the characteristics of the bivariate Gaussian distribution. 

Figure 2.17 shows all 3000 points in the three chains; the distribution is bivariate 

Gaussian. Table 2.3 shows the summary statistics of the three chains. The means of X and 

Y are close to zero and the correlation coefficients are close to the target value of 0.5. 

The joint bivariate Gaussian distribution was not used explicitly in this example, but 

the Gibbs sampler produced a two-dimensional Markov chain that successfully sampled 

from the joint distribution. 
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Figure 2.17: Results of three two-dimensional Gibbs samplers simulated to t=1000 using 

bivariate Gaussian conditional distributions. 

 

Table 2.3: Summary statistics for three two-dimensional Gibbs samplers simulated to 

t=1000 using bivariate Gaussian conditional distributions. 

 Chain 1 Chain 2 Chain 3 

E{X} 0.017 0.074 -0.011 

E{Y} 0.000 0.079 -0.006 

ρxy 0.478 0.517 0.488 

 

2.4.3 Multi-Dimensional Gibbs Sampler 

A two-dimensional simulation is useful in many cases; however, for earth sciences 

applications the distributions of interest are of much larger dimensions. Markov chains 
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can be used to model these higher-dimensional variables. A multidimensional variable X 

at time t is expressed as 

 ( )1 2 1, , , ,t n n t
X x x x x−= …  (2.36) 

 
( )

( )

1 2 1

1

1 2 1

1

, , , , , ,
~

, , , , , ,

i n n t
t K

i n n t
k

f x x x x x
X

f x x x x x

−

+

−
=

∑

… …

… …

 (2.37) 

Example: Four-point Domain, Two Facies 

Consider the case of a four-cell model in a two-by-two arrangement with two possible 

facies values (as in the MPH shown in Figure 2.5). Considering this as a geomodel, K=2 

and Nxyz=4 so there are a total of 2
4
=16 states in the space of the Markov chain. This is a 

very small geomodel; the size allows an analytical analysis to be performed. The variable 

for this example is expressed as: 

 ( )1 2 3 4, , ,t t
X x x x x=  (2.38) 

The individual components, xi, are the facies values at each location for a given state 

and can take the facies values of one or two. Each state is numbered as a MPH class α. To 

move from state to state one location at a time is changed conditional to the other three 

locations; note that it is possible for the chain to remain in the same state if the selected 

value for xi is equal to the current value. The new value for the four-dimensional variable 

X is drawn from the distribution: 

 ( )1 ~ | ,t i j
t

X f x x j i+ ≠  (2.39) 

In Equation 2.39, there is no restriction on which one of the four points is to be 

changed at each step; for the purposes of this example one will be selected at random. 

Figure 2.18 illustrates the state space of this example, with states that are adjacent to one 

another connected by lines and each state numbered by its corresponding MPH class. 

Figure 2.18 is arranged by univariate proportions, with the entirely white (facies one) 

state at the top and the entirely black (facies two) state at the bottom, and fractional 

proportions between the two. The state space is symmetric as each state has an opposite 

state with all four values switched. Opposing states are distributed symmetrically about 

the center of Figure 2.18 that is located in the space between states 7 and 10. Opposite 

states cannot communicate with one another in fewer than four steps. 

 



 

Figure 2.18: The state space of the example with the communicating states shown as 

connected and the MPH class of each state labeled.

 

To determine the conditional distributions in Equation 2.39, simple indicator kriging 

was used. The standardized covariance (dividing by the stationary variance) between two 

adjacent locations (either right

between diagonal locations was 0.2. Because there are only two possible values the 

standardized covariances are the same for both facies (Deutsch, 2002). Figure 2.19 shows 

the covariances. 

 

 

Figure 2.19: Covariance model used in the example.
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Figure 2.18: The state space of the example with the communicating states shown as 

connected and the MPH class of each state labeled. 

To determine the conditional distributions in Equation 2.39, simple indicator kriging 

ndardized covariance (dividing by the stationary variance) between two 

adjacent locations (either right-left or up-down) was assumed to be 0.5 and the covariance 

between diagonal locations was 0.2. Because there are only two possible values the 

d covariances are the same for both facies (Deutsch, 2002). Figure 2.19 shows 

 

Figure 2.19: Covariance model used in the example. 

 

Figure 2.18: The state space of the example with the communicating states shown as 

To determine the conditional distributions in Equation 2.39, simple indicator kriging 

ndardized covariance (dividing by the stationary variance) between two 

down) was assumed to be 0.5 and the covariance 

between diagonal locations was 0.2. Because there are only two possible values the 

d covariances are the same for both facies (Deutsch, 2002). Figure 2.19 shows 
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For any location that is to be modified there is always one diagonal location and two 

adjacent; setting the diagonal location as data point one and the two adjacent locations as 

data points two and three, the simple IK system is then: 

 

1

2

3

1 0.5 0.5 0.2

0.5 1 0.2 0.5

0.5 0.2 1 0.5

λ

λ

λ

     
     =     
          

 (2.40) 

Solving this system, the optimal linear weights are: 

 

1

2

3

0.3714

0.5714

0.5714

λ

λ

λ

−   
   =   
      

 (2.41) 

Using global proportions of 0.4 for facies 1 (white) and 0.6 for facies 2 (black) and 

randomly selecting the location to be changed, the transition matrix for this Gibbs 

sampler is shown in Figure 2.20. From each state the chain can move to five potential 

states: the four adjacent states in Figure 2.18 or the same state, i.e. Xt+1=Xt. 
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Figure 2.20: Transition matrix for the example Gibbs sampler. 

 

It is notable that two states (7 and 10) have no probability of being visited from any 

other state, and so these two states are clearly transient, as they can only occur as the 

initial state and will never be visited again by the Markov chain. These two states are 

those for which the diagonal locations have the same facies; that arrangement disagrees 

with the structure suggested by the covariance model and therefore the transience of these 

states is sensible. The properties of the other states are less clear. 

Taking the limit in Equation 2.30 for the transition matrix, the stationary distribution, 

f(X), of the Markov chain can be calculated. Table 2.4 shows the stationary joint 
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distribution. States 7 and 10 do indeed have zero probability in the full joint distribution 

and are therefore transient as mentioned above. The states with higher proportions of 

black values always have higher frequencies than the opposite states with higher 

proportions of white values due to the different global univariate proportions. 

 

Table 2.4: Stationary distribution of the multi-dimensional Gibbs sampler example. 

Class Frequency 

1 0.1689 

2 0.0268 

3 0.0268 

4 0.0653 

5 0.0268 

6 0.0653 

7 0 

8 0.0332 

9 0.0268 

10 0 

11 0.0653 

12 0.0332 

13 0.0653 

14 0.0332 

15 0.0332 

16 0.3299 

 

The limiting distribution in Table 2.4 is for an unconditional simulation, that is, there 

are no conditioning data. In earth sciences applications there are always some data, and 

one important data type is hard conditioning data from core samples, drillholes, or 

another analytical sampling method. A Gibbs sampler can easily accommodate 

conditioning data by freezing the appropriate locations. Figure 2.21 shows a state space 

for the same simulated domain as that shown in Figure 2.18, but with the upper left 

location frozen as facies 1 (white). Only odd-numbered classes can occur with this 

particular conditioning datum, as shown in Figure 2.21. 
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Figure 2.21: The state space of the conditional example with the upper left corner frozen 

as facies 1 (white). 

 

The transition probabilities are the same as for the previous example; however, if the 

upper left location is selected to be modified it must always end up as white. An 

alternative is to set it as white and never modify that location, but considering all 16 

states allows a demonstration of transient states. Figure 2.22 shows the new transition 

matrix for the conditional simulation case.  

 

 

0.8971 0 0.0343 0 0.0343 0 0 0 0.0343 0 0 0 0 0 0 0

0.2500 0.3957 0 0.1771 0 0.1771 0 0 0 0 0 0 0 0 0 0

0.2157 0 0.6072 0 0 0 0 0 0 0 0.1771 0 0 0 0 0

0 0.0729 0.2500 0.5086 0 0 0 0.0843 0 0 0 0.0843 0 0 0 0

0.2157 0 0 0 0.6072 0 0 0 0 0 0 0 0.1771 0 0 0

0 0.0729 0 0 0.2500 0.5086

Pαβ =

0 0.0843 0 0 0 0 0 0.8429 0 0

0 0 0.2500 0 0.2500 0 0.2500 0 0 0 0 0 0 0 0.2500 0

0 0 0 0.1657 0 0.1657 0.2500 0.1914 0 0 0 0 0 0 0 0.2271

0.2157 0 0 0 0 0 0 0 0.4300 0 0.1771 0 0.1771 0 0 0

0 0.2500 0 0 0 0 0 0 0.2500 0 0 0.2500 0 0.2500 0 0

0 0 0.0729 0 0 0 0 0 0.0729 0 0.7700 0 0 0 0.0843 0

0 0 0 0.1657 0 0 0 0 0 0 0.2500 0.3572 0 0 0 0.2271

0 0 0 0 0.0729 0 0 0 0.0729 0 0 0 0.7700 0 0.0843 0

0 0 0 0 0 0.1657 0 0 0 0 0 0 0.2500 0.3572 0 0.2271
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Figure 2.22: Transition matrix for the example conditional Gibbs sampler. 
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Because of the conditioning datum all even-numbered states must be transient; 

however, it is possible for the chain to remain in the transient states for some time, 

moving from one transient state to another before entering the recurring class of the odd-

numbered states. Table 2.5 shows the results of taking the limit in Equation 2.30 for the 

conditional example. All of the even-numbered states are indeed transient and over a long 

enough time the chain will leave those states and never return to that part of the state 

space. State 7 is also transient, as it was for the unconditional example. 

 

Table 2.5: Stationary distribution of the conditional multi-dimensional Gibbs sampler 

example. 

Class Frequency 

1 0.4088 

2 0 

3 0.065 

4 0 

5 0.065 

6 0 

7 0 

8 0 

9 0.065 

10 0 

11 0.158 

12 0 

13 0.158 

14 0 

15 0.0804 

16 0 

 

2.4.4 Markov Random Fields 

The example in Section 2.4.3 demonstrates a very small case. Real models of geology are 

much larger and more complex: there are often on the order of 10
6
 cells in a geomodel 

and each cell has an assigned facies value. The probability of moving from one state to 

another should theoretically be the full conditional probability of the facies at one 

location given the current facies at all other locations as per Equation 2.37. 

The full conditional distributions are of an order only one less than the full joint 

distribution of all locations. To reduce the dimension of the statistics to a manageable 



level that is both inferable and useable, the concept of 

(Kindermann and Snell, 1980). In a Markov random field, the Markov property (Equation 

2.25) is applied spatially rather than in time. If a variable 

as in Equation 2.36 and these dimensions are distributed spatially, then the conditional 

distribution of a single dimension or location is only dependent on those nearby locations:

 ( | , , | , ,
i j i j i i

f x x j A j i f x x j A

In Equation 2.42 the part of variable 

entire area covered by X; and 

similar in principle to the Markov property in Equation 2.25 in that information can be 

disregarded without changing the con

the information separated from 

Markov random field. 

 

 

Figure 2.23: An example of a Markov random field in area 

local neighbourhood ∂i. 

 

The concept of Markov random fields is used implicitly in many geostatistical 

algorithms. The use of limited search radii when finding scattered data in a sequential 

algorithm is a common practice (Deutsch and Journel, 1998). Disca

limited radius amounts to the implicit assumption of a Markov random field (

Huijbregts, 1978). 
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is both inferable and useable, the concept of Markov random fields can be used 

(Kindermann and Snell, 1980). In a Markov random field, the Markov property (Equation 

2.25) is applied spatially rather than in time. If a variable X has a number of dimensions 

as in Equation 2.36 and these dimensions are distributed spatially, then the conditional 

distribution of a single dimension or location is only dependent on those nearby locations:

) ( )| , , | , ,
i j i j i i

f x x j A j i f x x j A∈ ≠ = ∈ ∂ ∂ ∈  

In Equation 2.42 the part of variable X being considered is at location i; A

; and ∂i is the local neighbourhood around location 

similar in principle to the Markov property in Equation 2.25 in that information can be 

disregarded without changing the conditional distribution. Rather than separation in time, 

the information separated from i in space is ignored. Figure 2.23 shows an example of a 

 

Figure 2.23: An example of a Markov random field in area A with point of interest 

The concept of Markov random fields is used implicitly in many geostatistical 

algorithms. The use of limited search radii when finding scattered data in a sequential 

algorithm is a common practice (Deutsch and Journel, 1998). Discarding data outside a 

limited radius amounts to the implicit assumption of a Markov random field (Journel and 

can be used 

(Kindermann and Snell, 1980). In a Markov random field, the Markov property (Equation 

has a number of dimensions 

as in Equation 2.36 and these dimensions are distributed spatially, then the conditional 

distribution of a single dimension or location is only dependent on those nearby locations: 

(2.42) 

i; A is the 

is the local neighbourhood around location i. This is 

similar in principle to the Markov property in Equation 2.25 in that information can be 

ditional distribution. Rather than separation in time, 

in space is ignored. Figure 2.23 shows an example of a 

with point of interest i and 

The concept of Markov random fields is used implicitly in many geostatistical 

algorithms. The use of limited search radii when finding scattered data in a sequential 

rding data outside a 

Journel and 
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3 MPS-GS Theory 

The application of a Gibbs sampler (GS) to earth sciences problems requires a number of 

modeling decisions. The determination of conditional distributions, inference of statistics 

used, and selection of the initial states are all important considerations in a Gibbs 

sampler. Using multiple-point statistics (MPS) in a GS can lead to problems with storage 

of information caused by dimensionality (Strebelle, 2002), selection of an MPS template 

(Barrera et al, 2004), and the measurement of how well MPS are reproduced. 

This chapter develops the theory for an algorithm, called MPS-GS, that has been 

implemented to use MPS in a GS framework. The conditional distributions used in MPS-

GS are presented in Section 3.1. Section 3.2 discusses statistical inference from a training 

image (TI). Section 3.3 shows an example of the inference and use of MPS to determine 

conditional distributions. Section 3.4 discusses the topic of initial states in MPS-GS. 

Section 3.5 provides a framework for the use of multiple-point patterns in the MPS-GS 

algorithm. 

3.1 Conditional Distributions 

The transition matrix of a GS for earth science applications is largely controlled by the 

conditional distributions used by the algorithm. Using simple statistics such as univariate 

proportions and variograms will produce transition probabilities that result in simulated 

images that have low-order structure. Sequential algorithms exist (see Chapter 2) that can 

reproduce such structure, negating the need for an iterative method. 

Higher-order statistics (i.e. MPS) can be used to determine the conditional 

distributions in a GS; that is the goal of this thesis. Within the framework of a GS on a 

Cartesian grid, it is not necessary to search for nearby data or consider different 

configurations; this lends itself naturally to the use of templates for calculating statistics, 
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storing information, and determining conditional distributions. A limited template size 

can be justified by assuming a Markov random field where the template is the local 

neighbourhood ∂i. A decision must be made on how to best use a MPS template for 

calculating conditional distributions. 

One such possible decision is to use a single normal equation and Bayes’ Law (see 

Equation 2.21) in a similar manner to SNESIM. This conditional distribution would result 

in realizations that honour the MPH of the template. A problem that arises when using 

this approach is the dimensionality of a MPH for large MPS templates. 

For a simulation with K facies and an MPS template with N points, there are K
N
 

classes in the MPH. A training image can provide at most Nti occurrences of MPH 

classes. If the TI size is on the order of Nti=10
6
, there are K=3 facies, and N=40 points in 

the template, then at most only one in every 1.21x10
13

 MPH classes could be informed. In 

a sequential algorithm this problem is avoided by using only a limited number of 

surrounding data points (not filling the entire template) and dropping the furthest data 

locations in cases where the data configuration is not seen in any informed MPH class. 

In an iterative algorithm such as a GS every location is informed and therefore there 

are no data configuration issues. This is one of the main advantages of iterative methods 

(Srivastava, 1992). Starting from a random initial state the vast majority of the MPH 

classes seen in a simulated realization will not show any quantifiable structure, and will 

not occur in the TI. Figure 3.1 shows an example of a 24-point MPH class that does not 

display any patterns that are commonly associated with geological structure. Points could 

be dropped similar to SNESIM to reduce the dimension of the statistics until the lower-

order MPH class is informed; the problem with this approach is that the dimension of the 

statistic must be reduced so much that little of the high-order structure is preserved, and it 

is difficult to determine the final order of the statistics that are being reproduced. 
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Figure 3.1: A single class for a 24-point MPH that shows no discernible geological 

structure. 

 

The solution proposed in this thesis is to divide a MPS template into a number, M, of 

discrete multiple-point events (MPEs), each containing N points. Each MPE contains 

lower-order information than an entire MPS template and is easier to infer from a TI. A 

number of MPEs considered together can be used to introduce high-order structure into 

the transition probabilities of a GS. 

3.1.1 Multiple-Point Events 

A multiple-point event is defined here as a discrete set of N points distributed spatially 

within a MPS template. Figure 3.2 shows an example of a 24-point template, with the 

same arrangement of facies as in Figure 3.1, broken down into M=6 discrete MPEs with 

N=4. 
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Figure 3.2: A 24-point MPH class (center) and six discrete multiple-point events 

containing the same data. 

 

A MPE can be used as a template for calculating a MPH, and the indicators of the 

MPH classes used as data for estimating a conditional probability of a facies: 

 ( ) ( ) ( ) ( )*

,

1 1

N
M K

k

i i i

i

P k P k I E P Eα α
α

α

λ
= =

 = + ⋅ − ∑∑  (3.1) 

In Equation 3.1, P
*
(k) is the estimated probability of facies k given the nearby data; 

P(k) is the global probability of facies k; Ei
α
 represents class α of MPE i; M is the number 

of MPEs used in the estimate; N is the number of points in each MPE; I(Ei
α
) is the 

indicator of Ei
α
 occurring; P(Ei

α
) is the global probability of Ei

α
; and λ

k
i,α is the linear 

weight assigned to Ei
α
. Equation 3.1 is a linear estimate similar to the simple indicator 

kriging estimate (Equation 2.14) but uses non-linear data (i.e. MPEs) rather than the 

indicators of univariate information. 

The error variance of an estimated facies probability found using Equation 3.1 can be 

calculated, as is the case for any linear estimate: 
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Expanding the squared terms in Equation 3.2, the error variance then becomes: 
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Taking the expected values and changing the notation to probabilities then gives: 
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To find the optimal linear estimation weights using Equation 3.4, it is necessary to 

first define the multiple-point covariance: 
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A MP covariance is similar to an indicator covariance or cross-covariance, but is 

generalized to allow for MPEs. If each event has only a single point then Equation 3.5 

becomes the definition of an indicator covariance for a defined lag. A MP covariance is a 

spatial statistic of order 2N. It is also possible to define the covariance between a MPE 

and a single-point indicator, a statistic of order N+1: 
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 (3.6) 

Substituting MP covariances into Equation 3.4, 
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  (3.7) 

Equation 3.7 is a quadratic function with the linear estimation weights as the 

independent variables. If the MP covariance model used is positive definite then there 

exists a unique global minimum to Equation 3.7. To minimize the function value, the 

partial derivatives with respect to all of the linear weights can be taken: 
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  (3.8) 

The point at which the partial derivatives are all zero gives the global minimum for 

the error variance: 
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 (3.9) 

Setting Equation 3.8 equal to zero and rearranging gives a system of linear equations: 
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The Equations 3.10 are a system with MK
N
 equations and unknowns. Solving the 

system and substituting the optimal weights back into Equation 3.1 results in an optimal 

linear estimate using the MPEs as defined in the given MPS template. 

3.1.2 Relation to the Single Normal Equation 

The MPE estimator in Equation 3.1 provides a way of linking the linear estimates in 

traditional covariance- or variogram-based geostatistics with the concept of high-order 

statistical moments. This approach is similar to the justification of the use of a SNE for 

calculating conditional distributions. If only a single MPE is in the template (M=1) and 

only the MPH class α that is seen in the nearby data is used as conditioning information 

(I(Ei
α
)=1), then the estimate in Equation 3.1 becomes (Strebelle and Journel, 2001): 

 ( ) ( ) ( )*

, 1
k

i iP k P k P E
α

αλ  = + ⋅ −   (3.11) 

There is only a single data point and a single linear weight in this case. The system of 

Equations 3.10 is then only one equation with one unknown: 
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It is a simple matter of rearranging Equation 3.12 and using the definition of a 

multiple-point covariance to find the value of λ
k
i,α: 
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Substituting the linear weight in Equation 3.13 back into Equation 3.11, the estimate 

for the probability of facies k becomes: 
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 (3.14) 

This is the definition of the SNE as shown in Equation 2.21. 

3.1.3 Properties of the Conditional Distributions 

The estimated conditional distributions in Equation 3.1 have a number of mathematical 

properties that must be considered when solving the system of Equations 3.10. The first 

of these properties involves the summation of all MPH classes for a given MPE: 

 ( )
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K

iP Eα

α =

=∑  (3.15) 

The sum of the probabilities of all combinations of facies α in a given spatial 

configuration i is always equal to one. Some combination of facies must exist for  each 

configuration. Another property involves the joint probability of two MPEs: 
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In words, Equation 3.16 states that for a defined configuration of facies β in spatial 

arrangement j, some configuration of facies α must always occur at the spatial locations 

defined by MPE i. Using the properties in Equations 3.15 and 3.16,  
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This shows that the sum of all MP covariances involving a specific class for one 

MPE must be zero; positive covariances must be balanced by negative covariances. A 

similar property is held for the covariances between MPEs and single-point indicators: 
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Recalling the system of Equations 3.10 and using the properties in Equations 3.17 

and 3.18, it can be shown that the sum of the linear weights given to a particular class β 

of one MPE j is zero: 
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 (3.19) 

This property is useful for checking the solutions for the optimal weights; any 

positive weights assigned to a MPE class must be exactly offset by negative weights. It 
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also makes logical sense: if a specified event Ei
α
 suggests the presence of one facies (i.e. 

adds to the probability by a positive weight) then it inherently suggests that some other 

facies must be less likely to occur. Taking the property in Equation 3.19 for all facies, it 

can be shown that the sum of all of the estimates from Equation 3.1 is one: 
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Although the sum must be one there is no constraint that the estimated probabilities 

P
*
(k) are between zero and one. 

3.1.4 Singularity of the System 

Equation 3.17 shows that the system of Equations 3.10 must be a singular system; there 

are MK
N
 equations and variables, but only at most M(K

N
-1) independent variables as the 

sum of any K
N
-1 covariances (or weights) for any MPE is equal to zero minus the 

remaining covariance (or weight). The quadratic function in Equation 3.7 is positive 

semidefinite and there are an infinite number of solutions to the system of Equations 3.10 

(Anderson et al, 1999). The system of equations cannot be solved by the typical means 

such as Gaussian elimination (Deutsch and Journel, 1998). A resolution of this problem 

can be found by looking at the system of equations in matrix form. 

Matrix Form of the Equations 

Recall the system of Equations 3.10: 

 { } { },

1 1

, ,    1, , ,  1, ,

N
M K

k N

j i j i

j

Cov E E Cov E k i M Kα β α
β

β

λ α
= =

⋅ = = =∑∑ … …  

The left-hand-side [LHS] covariances of the system of equations can be expressed as 

a symmetric MK
N
-by-MK

N
 matrix: 
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  (3.21) 

Each of the submatrices (separated by dashed lines) within the full [LHS] represents 

the covariances between all MPH classes of two particular MPEs, and each submatrix is 

K
N
-by-K

N
 with a rank no greater than K

N
-1. An easier way to visualize the indices of 

[LHS] is shown below: 
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=
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⋰ ⋮ ⋱

 (3.22) 

The [LHS] matrix is the same for all facies probabilities P(k), k=1,…,K. The right-

hand-side [RHS] of Equation 3.10 is different for each facies; however, in matrix form a 

single [RHS] made up of K column vectors can be constructed: 
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 (3.23) 

The [RHS] matrix has size MK
N
-by-K; each column is made up of the covariances 

between a single facies indicator and all MPE classes. The subvectors of [RHS] 

(separated by dashed lines in Equation 3.23) all sum to zero as per Equation 3.18. 

Equation 3.24 shows [RHS] in a form that makes it easier to visualize the indices: 
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 (3.24) 

The linear weights in Equation 3.10 can be expressed as a matrix the same size and 

shape as [RHS]: 
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 (3.25) 

The size of this matrix is MK
N
-by-K. From Equation 3.19 each row of the weight 

matrix sums to zero, as opposed to the columns in [RHS]. Equation 3.26 shows the linear 

weight matrix with the indices labeled: 
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 (3.26) 

To express the linear estimate in Equation 3.1 in matrix form, it is necessary to define 

other terms in matrix form. One term is the global univariate proportions in a 1-by-K row 

vector: 

 [ ] ( ) ( )1
k

P P k P k K = = = ⋯  (3.27) 

Another term is the indicators of all classes for all MPEs in a 1-by-K
N
 row vector: 

 [ ] ( ) ( )1

1 N

M

i i K
I I E I Eα α= =

= =
 =  ⋯  (3.28) 

The next term is the global proportions of all classes for all MPEs in a 1-by-K
N
 row 

vector: 

 [ ] ( ) ( )1

1 N

M

i i K
P P E P Eα α= =

= =
 =  ⋯  (3.29) 

The last term of the equation that must be defined in matrix form is the linear 

estimates of the K facies probabilities, in a 1-by-K row vector: 

 ( ) ( )* * *1P P k P k K   = = =   ⋯  (3.30) 

Combining the matrices that are now defined and substituting into Equation 3.1, the 

conditional probabilities of all K facies in a 1-by-K row vector is: 

 [ ] [ ]*

kP P I P λ

 
   = + −   
  

 (3.31) 

The system of Equations 3.10 can now be written as a matrix equation: 

 LHS RHSλ

     
     =     
          

 (3.32) 
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Eigenvalue Decomposition 

The [LHS] matrix is both real and symmetric; because of these properties, it is possible to 

break down [LHS] into its eigenvalues and eigenvectors (Anderson et al, 1999): 

 

T

LHS V Vω

       
       =       
              

 (3.33) 

In Equation 3.33, [ω] is a matrix of the same size as [LHS] with the diagonal entries 

being the eigenvalues of [LHS] and all other entries zero: 

 

1 0

0 N
M K

ω

ω

ω
⋅

  
   =   
     

⋱  (3.34) 

As show by Equation 3.17, [LHS] is singular and has a rank no greater than M(K
N
-1). 

The singular matrix will therefore have at least M eigenvalues equal to zero. The number 

of eigenvalues that are equal to zero is exactly M if all MPH classes for all MPEs have 

non-zero probabilities; uninformed classes create null rows and columns in the matrix 

that are redundant information. If a large proportion of MPH classes are uninformed 

[LHS] will be very sparse and the redundant zero columns and rows may be dropped 

without changing its properties. 

In Equation 3.33, the columns of [V] are the orthonormal eigenvectors of [LHS], 

meaning the vector lengths are equal to one and the transpose of V is also its inverse: 

 

T

V V I

     
     =     
          

 (3.35) 

The inverse of [LHS] can be found by rearranging Equation 3.33: 

 

1

1

T

LHS V Vω

−       
      =       
            

 (3.36) 

In Equation 3.36, [V] and [V]
T
 are the same as in Equation 3.33; however, the middle 

term is the inverse of [ω]. The inverse is found by taking the reciprocal of each diagonal 

term in the matrix and leaving the rest as zero: 
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    

⋱  (3.37) 

The zeros in [ω] are accounted for by leaving those terms as zero and not taking the 

reciprocal. This is similar to the procedure for singular value decomposition (Anderson et 

al, 1999) but using the symmetry of [LHS] to simplify the calculations. The solution to 

the matrix Equation 3.32 is then: 

 1

T

V V RHSλ ω

        
        =         
                

 (3.38) 

Because [LHS] is singular, there is no single inverse and thus there exist an infinite 

number of solutions of the optimal linear weights. The matrix procedure as outlined 

above produces the pseudoinverse of the system. A pseudoinverse is a solution to the 

system of equations that has the minimum norm of the resulting weights. The minimum 

norm property of this solution is desirable because it consequently avoids any extreme 

linear weights while minimizing the variance of the estimate. Other solutions are 

mathematically valid from a minimum-variance perspective but one cannot be justified 

over another in an objective way. The pseudoinverse solution is unique and because of 

the minimum-norm property is justifiable compared to any other solution. 

The problem with uninformed MPH classes is solved by using this approach. Each 

uninformed class is represented in [LHS] as a row and column of zeros, reducing the rank 

of the matrix by one. Solving the linear estimation system using Equation 3.38 will result 

in weights of zero being assigned to uninformed classes; alternatively, these classes could 

be assigned weights of zero and excluded from the system to reduce the CPU and 

memory requirements. An optimal solution is still found using the reduced system and 

assigning uninformed classes weights of zero seems reasonable and is mathematically 

valid. An example of using the eigenvalue / singular value decomposition approach to 

solving the system of equations will be shown in Section 3.3. 
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3.1.5 Markov Random Fields 

The MPS-GS algorithm uses the concept of Markov random fields (MRFs) primarily to 

justify using a limited search radius; however, there are several deviations from a true 

MRF. In a standard MRF application, a model is formulated and then sampled from using 

a MCMC method. A major difficulty is in determining the model parameters. In MPS-GS 

the conditional distributions are not explicitly defined by a model but rather are estimated 

as shown above; the least-squares approach differs from standard MRFs that use 

maximum likelihood estimators. This estimation approach reflects the uncertainty in the 

TI and the high-order statistics that are inferred. Uninformed MPH classes and 

conditional probabilities outside the interval [0,1] force approximations to be made that 

make the MPS-GS algorithm not a true MRF. 

An implementation of Markov random fields was developed to use high-order 

statistical moments (Tjelmeland and Besag, 1998). That methodology uses the concept of 

cliques (similar to MPEs) to determine conditional probabilities of colours on a two-

dimensional hexagonal grid, then simulates using the Metropolis-Hastings algorithm. 

Controlling the conditional probabilities is difficult and sensitive to selection of 

parameters. The MPS-GS algorithm takes a more practical approach at the expense of 

some theoretical rigor. 

3.2 Statistical Inference 

High-order spatial moments and MPS are too complex to infer directly from limited 

sample data. Training images, reviewed in Section 2.2.3, are used to calculate the 

necessary statistics such as the probabilities in Equation 3.1 and the MP covariances in 

Equation 3.10. As discussed above, the size of a TI Nti is often significantly smaller than 

the number of combinations possible in a MPS template, K
N
. 

In practice, the full extents of the TI cannot be scanned using a MPS template and the 

effective size is less than Nti locations. Because of the nature of a template with fixed size 

and shape, the template cannot go outside the grid. Figure 3.3 shows an example of this: 

the TI from Figure 2.6 is shown, with a five-point template superimposed in several 

locations. One template is too far to the right in the TI and cannot be used. Any template 

with its central location outside of the outlined square cannot be fully informed; the 
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square is the erosion limits of the TI for that template, or the border to which the TI may 

be scanned. 

 

  

Figure 3.3: A channel-type TI with a number of five-point templates and the scanning 

border superimposed. 

 

This erosion changes some of the statistics such as univariate proportions and MP 

covariances; not accounting for the edge effects causes the system of Equations 3.10 / 

3.32 to be unstable and not necessarily positive semidefinite. Accounting for the edge 

effects entails using only those frequencies that are seen in the locations that can be 

scanned; this may lead to identically-shaped MPEs having different MPHs if different 

patterns occur near different edges of the TI. 

Classes of MPEs that occur only once or twice in a TI may have significantly 

different frequencies if the edges are or are not accounted for. If multiple grids (Deutsch 

and Journel, 1998) are used in the simulation then the coarsest template may erode so 

much of the TI that there are insufficient locations remaining to inform the MP 

covariances. 

3.2.1 Selection of the MPS Template 

The template that is used for statistical inference and simulation is an important 

consideration. It is possible to use a simple ellipsoidal template (Liu, 2006); the 

? 
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anisotropy can be changed to match the approximate anisotropy of the geometric features 

in the TI. As an alternative, it is possible to characterize the values of offsets within the 

template by some measure other than Euclidean distance: one possibility that has been 

explored elsewhere is covariances (Barrrera et al, 2004; Eskandaridalvand, 2008). The 

disadvantage of covariances is when there are more than two facies, weighting the 

different covariances and cross covariances or choosing a single facies to use for a 

representative template is an additional modeling decision. 

For MPS-GS it is necessary not only to select MN points for the template but also to 

group the points into discrete events. In this thesis it is proposed to use spatial entropy 

(Journel and Deutsch, 1993) as a measure to characterize and rank locations at specified 

lag vectors, then build a template based on this measure. Entropy is a measure of spatial 

disorder, so higher entropy suggests more randomness and less spatial structure. Low 

entropy suggests more information content between two locations. For a specified lag 

vector u, the two-point spatial entropy can be calculated as: 

 ( )' '

1 ' 1

ln
K K

kk kk

k k

H P P
= =

= − ⋅∑∑u
 (3.39) 

In Equation 3.39, Hu is the entropy of location u in a template (or at lag vector u) and 

Pkk’ is short form for P(k(u0)=k,k(u0+u)=k’), or the probability that the facies at the 

central location is k and the facies at offset u is k’. At an offset of zero, Pkk’=Pk for k=k’ 

and is zero otherwise. The minimum entropy occurs at an offset of zero. If k and k’ are 

entirely unrelated, then Pkk’=Pk*Pk’ and the entropy is maximized at large offsets where 

there is no spatial relation. This is similar to zero correlation beyond the range of a 

variogram. 

Entropy thus has minimum value at u=0 and maximum value at very large u. These 

endpoints are the same as those for variogram values. Locations that are in between these 

two extremes can be sorted based on entropy, providing a ranking measure that does not 

depend on the number of facies or any weighting of components. 

3.2.2 Examples 

The left side of Figure 3.4 shows a simple conceptual TI made up of ten-by-ten black and 

white squares (K=2); the right side shows a 21-by-21 square template, with the null offset 

in the center, and the spatial entropy of every location within the template. The maximum 

offsets are ten units in the X and/or Y directions, the same as the size of the squares; it 
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can be observed in the spatial entropy map that there is a repeating pattern in the image at 

that distance. 

 

 

Figure 3.4: A simple 160x160 TI made up of 10x10 black and white squares (left); two-

point spatial entropy of the TI in a 21-by-21 square template (right). 

 

Figure 3.5 shows a more realistic case featuring a three-facies TI with a fluvial 

channel structure; and the map of two-point entropy for a 21-by-21 template, again with 

zero offset in the center of the template. The entropy map in Figure 3.5 shows strong east-

west structure with shorter range north-south; there is also a slight northeast-southwest 

slant. An image with three (or more) facies does not present a problem when calculating 

spatial entropy. 

 

 

Figure 3.5: A 256x256 three-facies fluvial TI (left); two-point spatial entropy of the TI in 

a 21-by-21 square template (right). 
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In a fluvial TI such as the one shown in Figure 3.5, all of the facies have similar 

anisotropy. In more complex cases it is possible that there could be structures with 

significantly different geometries and directions of continuity. Figure 3.6 shows a TI with 

two very different ellipsoidal structures, and a 21-by-21 template of spatial entropies. The 

two ellipsoid structures are both captured and represented in the entropy map; both 

directions of anisotropy are visible. 

 

 

Figure 3.6: A 256x256 TI with two distinct ellipsoidal structures (left); two-point spatial 

entropy of the TI in a 21-by-21 square template (right). 

 

Spatial entropy can be used for cases where different anisotropic structures are 

represented by different facies; Figure 3.7 shows such a case. The left side of Figure 3.7 

is a complex TI with five facies, all with different anisotropies (Deutsch, 1992); the right 

side shows the entropies of the TI in a 21-by-21 template. Three of the facies have east-

west structure, and this is seen in the entropy map. One facies has a very distinct 

northwest-southeast structure, and this is seen in the entropy map; points in the template 

that are northwest or southeast of the null vector contain significant information about 

whether or not the central location is likely to be the green facies. 
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Figure 3.7: A 200x100 five-facies complex TI (Deutsch, 1992) (left); two-point spatial 

entropy of the TI in a 21-by-21 square template (right). 

 

The examples shown above for the spatial entropy have used relatively simple two-

point entropy. Spatial entropy can be extended to statistics in an N-point template by 

considering the MPH frequencies instead of two-point probabilities. The N-point entropy 

of a MPE i can be calculated as: 

 ( ) ( )
1

ln

N
K

i i iH P E P Eα α

α =

 = − ⋅  ∑  (3.40) 

For classes α in Equation 3.40 that have probabilities of zero, the logarithm function 

is undefined; the limit value of the entropy contribution is zero. Using the N-point 

entropy instead of two-point entropy accounts for the arrangement of points in a template 

instead of just individual locations one at a time. The N-point MPE containing the most 

information is not necessarily made up of the N points that have the lowest two-point 

entropy, and Equation 3.40 suggests a more robust measure for measuring MPE 

information content. An example of a template created using the MP spatial entropy will 

be shown in Section 3.3. 

3.3 Example 

This Section demonstrates the creation of MPEs with minimal entropy from a TI and the 

solution of the matrix equations using eigenvalue decomposition as outlined above. The 

TI that is used for the example has a fluvial channel structure with east-west continuity 

and three facies, K=3 (background, channels, crevasse splays). The TI is very large (>10
6
 

cells in two dimensions); this ensures full inference of all MPH classes. Figure 3.8 shows 
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a small section of the TI. The background (white) facies has a univariate proportion of 

approximately 0.5; the channel (black) facies 0.4; and the crevasse splay (blue) facies 0.1. 

 

  

Figure 3.8: A section of the three-facies fluvial TI for the example. 

 

For the example, four MPEs are used (M=4) with four points each (N=4). The total 

size of the linear system in Equations 3.10 / 3.32 is then MK
N
=324. This size is large 

enough for the example but small enough to be manageable from a visualization and 

calculation perspective. 

To use the N-point entropy shown in Equation 3.40, the offsets u and –u were 

retained that had the lowest three-point entropy when taken together with the null offset; 

then, the five-point entropy was calculated for the null offset, the two retained points, and 

a number of potential offsets (as well as their opposites). The MPEs after the first were 

calculated using the same procedure but not including any of the same offsets within the 

potential template. This does not guarantee minimum-entropy MPEs, but does ensure the 

minimum-entropy offsets are matched with optimal additional points. Figure 3.9 shows 

the four MPEs that were calculated from the TI using this method as well as the five-

point entropy associated with each. 

256

0

0 256 
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Figure 3.9: A MPS template of four, four-point MPEs for the example. 

 

Each MPE has K
N
=81 possible combinations of facies; in this example all MPH 

classes are informed for all four MPEs. Figure 3.10 shows the MPHs of the four MPEs, 

with each MPH sorted from greatest to least class frequency for ease of visualization. 
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Figure 3.10: A graph of the four MPHs of the MPEs in the example, sorted from greatest 

to least frequencies. 

 

The 324-by-324 [LHS] matrix of the system is calculated, and the rank of [LHS] 

found to be M(K
N
-1)=320 or exactly what is predicted as per the theory in Section 3.1.4. 

Four eigenvalues of [LHS] are exactly equal to zero and several more are very close to 

zero. Double precision real numbers had to be retained to produce the correct results; 

using single precision storage made the [LHS] matrix unstable. Figure 3.11 shows a 

graph of the eigenvalues of [LHS] sorted from greatest to least. The properties in 

Equations 3.17 and 3.18 are confirmed to be true. 
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Figure 3.11: A graph of the 324 eigenvalues in the linear system of the example, sorted 

from greatest to least. 

 

The optimal linear weights were calculated using Equation 3.38. The weights were 

found to satisfy Equation 3.20 as the weights for any single class of a MPE do indeed 

sum to exactly zero. Figure 3.12 shows a graph of the optimal linear weights for the 

example. It can be seen that the positive and negative weights exactly match one another 

for all of MPH classes of each MPE. 
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Figure 3.12: A graph of the optimal linear weights for the example, sorted in the same 

order as the MPHs in Figure 3.10. 

3.4 Initial States 

Recall Equation 2.27, the definition of a transition matrix: 

 ( )1 |     ,t tP X X Pαββ α α β+

 
 = = = ∀ 
  

 

The transition matrix can be broken down into submatrices made up of the transition 

matrix of each irreducible recurrent class, Pr, r=1,…,R; the transition matrix within the 

transient classes, Q; and the transition probabilities from the transient states to the 

recurrent states, S (Lawler, 2006): 

 

1 0

0

0
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P
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S Q

αβ

 
   
   =   
    

  

⋱
 (3.41) 

As shown in Equation 2.30, the stationary distribution π of a Markov chain with 

transition probabilities Pαβ is found by taking the limit of the transition matrix as time 
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goes to infinity. Substituting in Equation 3.41 and using the properties of a reducible 

transition matrix (Lawler, 2006) gives the result: 
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 (3.42) 

In Equation 3.42 the submatrices Pr each form their own irreducible Markov chains; 

if the chain over the whole state space starts in recurrent class r then the chain will always 

remain in that class and will not explore the full state space. Chains that start in transient 

states will eventually end up in a recurrent class; which class is dependent on the 

transition probabilities S. The initial state φ will exert some control over the recurrent 

class that the Markov chain ends up in over a long time period. 

State spaces in earth sciences applications are finite but extremely large, so it is 

impossible to analytically scrutinize the transition probabilities in the MPS-GS algorithm. 

The existence of transient states was demonstrated in the small example in Section 2.4.3, 

and distinct recurrent classes would be expected to exist for a state space with over 

10
100,000

 classes. Selecting initial states by using other simulation methods such as SIS or 

TGS (see Section 2.1.2) would reduce the distance between the initial state and the high-

probability recurrent states. This could lead to a bias if the initial states are consistently in 

one recurrent class; the recurrent states in other classes would never (or rarely) be 

explored by the Markov chain. For this reason MPS-GS uses a random initial state to 

ensure an unbiased exploration of the entire state space. 

3.5 Pattern Simulation 

The idea of pattern-based geostatistics was mentioned in Section 2.3.3. The process of 

placing (or patching) entire patterns into a simulation grid instead of a single point at a 

time extends the concept of MPS from data used for inference of conditional distributions 

to the distributions themselves. All of the statistics inferred from a TI can be of any 
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arbitrary order set by the modeler. There is no practical or theoretical constraint 

preventing entire patterns from being used instead of individual points (Journel, 2004). 

The MPS-GS algorithm can be extended to include patterns by the same logic as 

using MPEs instead of univariate information as data. Equation 3.1, the linear estimate of 

conditional distributions for facies using the indicators of MPEs, can be modified to 

estimate the probabilities of MPH classes for a given MPE: 

 ( ) ( ) ( ) ( )*

0 0 ,

1 1

N
M K

i i i

i

P E P E I E P Eγ γ γ α α
α

α

λ
= =

 = + ⋅ − ∑∑  (3.43) 

The MPH classes for MPE zero are the patterns to be patched into the domain. The 

event E0 is the central MPE in the template and takes the place of the null vector. There is 

no theoretical constraint as to how many points N0 the central MPE contains, and it need 

not be the same as N. Similarly there is no requirement for the data MPEs to have the 

same number of points and in fact each MPE Ei could have a different number of points 

Ni; the case where all of the statistics are of the same order has been used here for ease of 

notation. 

The optimal linear weights in Equation 3.43 can be found by using the same 

procedure as before, with the difference that the [RHS] statistics are now of order N+N0 

instead of N+1:  

 { } { }, 0

1 1

, ,    1, , ,  1, ,

N
M K

N

j i j i

j

Cov E E Cov E E i M Kγ α β α γ
β

β

λ α
= =

⋅ = = =∑∑ … …  (3.44) 

Another difference is that there are now K
N0

 columns in the [RHS] matrix and K
N0

 

probabilities to estimate. The properties of [LHS] do not change when using patterns. The 

MPS template used for calculating and storing information must be modified to include a 

central MPE instead of the null vector; Figure 3.13 shows an example template with a 

central pattern. 
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Figure 3.13: A 25-point MPS template with a five-point central event and five four-point 

MPEs as data. 
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4 Algorithm Implementation 

The MPS-GS algorithm developed in Chapter 3 presents a number of issues that relate to 

computational efficiency and a risk of numerical artifacts. This Chapter addresses these 

important implementation challenges. Section 4.1 presents modifications to be applied to 

the conditional distributions calculated using multiple-point events (MPEs). Section 4.2 

explains the need for a multiple-grid approach in MPS simulation and outlines how this is 

accomplished. Section 4.3 describes the criteria used for stopping the MPS-GS algorithm. 

Section 4.4 compares two alternatives for the path followed when visiting all locations; 

each visitation of all unsampled locations is termed a loop. Section 4.5 presents a solution 

to the issue of edge effects. Section 4.7 reviews a number of methods for evaluating the 

results of MPS simulation. 

4.1 Modifications to Conditional Distributions 

The conditional distributions calculated using MPEs are used in MPS-GS to explore the 

state space. Problems arise if the conditional distributions are used directly in MPS-GS; 

relatively simple adjustments can be used to rectify these problems. This section 

describes the required changes including the use of single-point indicators in addition to 

the MPE data; the division of the conditional distributions into two parts; a servosystem 

approach to reproduce global and local univariate proportions; and noise reduction 

methods to speed convergence and improve the appearance of the final realizations. 

4.1.1 Single-Point Indicators 

The linear estimate in Equation 3.1 uses a number of N-point events to determine 

conditional probabilities for the K facies. The statistics used in determining the linear 
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weights in Equation 3.10 are of order K
2N

. The higher the order of the spatial statistics, 

the more difficult it is to infer them reliably. Large MPEs are desirable as they contain 

more information; however, using a random initial state for the Gibbs sampler and large 

MPEs will lead to many patterns that are not informed from the training image (TI) and 

therefore must be discarded without contributing to the conditional distributions. This 

slows down convergence of the MPS-GS algorithm. 

A solution to this problem is to use single-point indicators in addition to large MPEs 

to improve the conditional distributions early in the simulation. Once some structure has 

been established, more MPEs will be informed from the TI. The informed MPEs then 

dominate the information provided by single-point data because the single-point events 

are redundant with the MPEs; this redundancy is demonstrated below. 

There is no theoretical constraint against using events of different sizes. The 

conditional probability of facies k is written below simultaneously using N-point MPEs 

and single-point indicators: 

 ( ) ( ) ( ) ( ) ( ) ( )*

, ,

1 1 1 1

; ;

N
M K MN K

k k

i i i u

i u

P k P k I E P E I u P uα α
α κ

α κ

λ χ κ κ
= = = =

 = + ⋅ − + ⋅ −   ∑∑ ∑∑  

  (4.1) 

In Equation 4.1, I(κ;u) is the indicator of facies κ at offset location u within the MPS 

template; P(κ;u) is the global probability of facies κ at location u (nominally the same as 

P(κ) but not necessarily due to erosion of the TI); and χ
k
u,κ is the linear weight assigned to 

I(κ;u). The system of equations is expanded from MK
N
 equations to MK

N
+MKN; the new 

[LHS] matrix becomes: 
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{ } { }
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, ,

i j i v
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Cov E E Cov E I
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κ β κ ψ

 
  
   =   
     
  

 (4.2) 

In Equation 4.2, I
k
u is used as shorthand notation for I(κ;u). The [RHS] matrix is 

expanded to have dimensions of MK
N
+MKN-by-K: 
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 (4.3) 

The [λ] matrix is also expanded to the same size as [RHS]: 
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 (4.4) 

Using single-point indicators in the estimator provides additional information in cases 

where not all MPEs Ei
α
 are informed. When the MPEs are informed, the single-point 

indicators contained within provide no additional information and do not affect the 

estimated conditional distributions. As a demonstration, consider the relations between 

single-point indicators and MPEs: 
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 (4.5) 

For single-point indicators located spatially within a specified MPE Ei, the value is 

always defined as zero or one. The covariance between Iu
κ
 and Ei

α
 for the case of u∈i can 

be rearranged as: 
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  (4.6) 

This shows that the covariance values in the lower-left submatrix of [LHS] can be 

expressed as linear combinations of terms within the upper-left submatrix with 
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coefficients equal to the conditional probability of the single-point indicators given the 

MPE classes; these conditional probabilities are known from Equation 4.5. The 

redundancy of the single-point indicators means that the rank of the [LHS] matrix is 

unchanged by their inclusion and P
*
(k) is not changed. 

4.1.2 Two-Part Conditional Probability 

The conditional probability of all facies must be calculated at each location visited by the 

MPS-GS algorithm; however, only the indicators change from one location to the next; 

the global probability terms are constant. For this reason, it is possible to determine a 

base or intermediate probability, P
+
(k), for every facies k at the start of the simulation: 

 ( ) ( ) ( ) ( ), ,

1 1 1 1

;

N
M K MN K

k k

i i u

i u

P k P k P E P uα
α κ

α κ

λ χ κ+

= = = =

= − ⋅ − ⋅∑∑ ∑∑  (4.7) 

The base probabilities do not account for any indicator values equal to one and are 

equivalent to every indicator having a value of zero. To update the base values to the full 

conditional distributions, the linear weights of the indicators that have values of one are 

added: 

 ( ) ( ) ( ){ } ( ){ }*

, ,

1 1

| 1 | ; 1
M MN

k k

i i u

i u

P k P k I E I uα
α κλ α χ κ κ+

= =

= + ∀ = + ∀ =∑ ∑  (4.8) 

This reduces the number of arithmetic operations necessary at each location from 

MK
N
+MKN to M+MN. This is a significant computational saving for large grids. 

4.1.3 Univariate Proportions 

The proportions of the facies are important in the response characteristics of a natural 

resource model; as such, reproducing the univariate proportions of facies is important. 

Algorithms that use high-order statistics often do not accurately reproduce univariate 

statistics (Strebelle and Journel, 2001). Problems with univariate proportions are also 

encountered when order relations problems exist (Ortiz, 2003); resetting facies 

probabilities to be within [0,1] amounts to changing the conditional probabilities and can 

lead to deviations from the target global distribution. 

Assuming stationarity in the mean of the indicator variables, the proportions are 

constant over the entire domain. In practice, there are often trends in facies proportions 
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that come from vertical proportion curves or secondary data, and these local univariate 

proportions must be accounted for in MPS-GS.  

Servosystem Correction 

Other MPS algorithms have used the concept of a servosystem correction to correct the 

global facies proportions (Strebelle and Journel, 2001, Liu, 2006). A servosystem adds 

the difference between the (target) global proportions and the current simulated 

proportions to the conditional probability: 

 ( ) ( ) ( ) ( )* TARG SIMP k P k P k P kµ′  = + ⋅ −   (4.9) 

P
TARG

(k) is the target proportion of facies k, and is not necessarily the same as the TI 

proportion P(k). The factor µ is a control parameter used to tune the impact of the 

servosystem; values of µ greater than one put more weight on the univariate proportions, 

while µ=0.0 removes the servosystem correction. The effect of µ is demonstrated in the 

example below. Recall the TI shown in Figure 2.6, a channelized TI that is 250x250 

(62,500 cells) with two facies, channel and background. The channels have a proportion 

of 0.30 in the TI. 

MPS-GS is used to create a number of realizations with varying values of µ. The 

parameters for all realizations were: G=4; M=16; N=4. The TI and all realizations for the 

example are 250x250 cells. Four servosystem parameters are used, µ=0.0, 0.5, 1.0, and 

2.0. Five target channel proportion values are used, Pchannel=0.1, 0.3, 0.5, 0.7, and 0.9. 

Figure 4.1 shows one realization from twelve cases. 

For µ=0.0 there is no effect from the servosystem and the resulting realizations have 

channel proportions of approximately 0.3, close to the TI proportions. For µ>0.0, the 

effect of the servosystem can be seen visually. There appears to be little change for 

different values of µ; the actual simulated proportions for the 20 cases are shown in Table 

4.1. 

There is no significant difference between µ values for target channel proportions 

close to the TI value of 0.3. As the target proportions vary, the servosystem becomes 

more prominent and the simulated proportions differ more from the target. 
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µ=0.0, Pchannel=0.1 µ=0.0, Pchannel=0.3 µ=0.0, Pchannel=0.5 

   

µ=0.5, Pchannel=0.1 µ=0.5, Pchannel=0.3 µ=0.5, Pchannel=0.5 

   

µ=1.0, Pchannel=0.1 µ=1.0, Pchannel=0.3 µ=1.0, Pchannel=0.5 

   

µ=2.0, Pchannel=0.1 µ=2.0, Pchannel=0.3 µ=2.0, Pchannel=0.5 

   

Figure 4.1: An example of the effect of µ and varying target facies proportions. Left 

column to right: target Pchannel=0.1, 0.3, 0.5; Top to bottom: µ=0.0, 0.5, 1.0, 2.0. 
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Table 4.1: Simulated channel proportions using varying µ and Pchannel parameters. 

  Target Channel Proportions 

  0.1 0.3 0.5 0.7 0.9 

Servosystem 

Parameter 

μ 

0.0 0.288 0.263 0.283 0.275 0.274 

0.5 0.131 0.275 0.436 0.576 0.746 

1.0 0.108 0.283 0.459 0.668 0.853 

2.0 0.092 0.283 0.482 0.704 0.893 

 

Local Proportions 

Facies proportions in local neighbourhoods or at individual locations can come from 

vertical proportion curves, areal proportion maps, secondary information, or expert 

interpretation. Local proportions could be viewed as likelihood data while the conditional 

distributions using hard data or a model of spatial structure (i.e. variogram, TI) could be 

considered prior information. 

With these definitions, the estimated conditional probability P
*
(k) is the prior 

distribution; the local facies proportions are the likelihood distribution, and are denoted 

by P
LOC

(k); and the combined or updated distribution accounting for hard and soft data is 

represented by P’(k). There are a number of methods to integrate the prior and likelihood 

information into an updated distribution. Those that are considered here are the additive 

method or servosystem (Strebelle and Journel, 2001); the multiplicative method or 

Bayesian updating (Deutsch, 2002); permanence of ratios (Journel, 2002); and a multiple 

servosystem approach developed for MPS-GS. 

The servosystem method for using secondary information adds the difference 

between the local and global proportions to the conditional probability; if this is 

combined with the global servosystem in Equation 4.9, the overall correction becomes: 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

*

*

LOC SIM

LOC SIM

P k P k P k P k P k P k

P k P k P k

µ

µ

 ′ = + ⋅ − + − 

 = + ⋅ − 

 (4.10) 

The parameter µ is a control parameter, but now applies to both the local proportion 

and servosystem corrections. The two corrections could be separated. Assuming the prior 

distribution and likelihood distribution each sum to one, the updated proportions will also 

sum to exactly one. A drawback to the additive correction for local facies proportions is 

that zeros and ones are not reproduced exactly; a facies with a local proportion of zero 
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would not necessarily have an updated probability of zero. Also, there is no guarantee 

that the updated proportions will be bounded by zero and one. 

Using Bayesian updating in a multiplicative method for reproducing local proportions 

is an alternative to the additive method. This correction is: 

 ( ) ( )
( )

( )
*

LOC
P k

P k P k
P k

τ
 

′ = ⋅   
 

 (4.11) 

In Equation 4.11 τ is a control parameter, with a value of zero removing all effect of 

the local proportions. The multiplicative approach to reproducing local proportions has 

the benefits of exactly reproducing zero values and never returning any negative updated 

probabilities. However, this method does not guarantee that the updated probabilities will 

have an upper bound of one and restandardization is required. 

Another approach to combining prior and likelihood information is the permanence 

of ratios. This updating procedure is as follows: 
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= ⋅ ⋅  ′ − 
 (4.12) 

In Equation 4.12, the parameter τ is a control parameter. The permanence of ratios 

approach has the significant benefit in that the updated probabilities will sum to one and 

will be bounded by zero and one. Local facies proportions of zero and one are also 

exactly reproduced. 

The additive, multiplicative, and permanence of ratios methods were all tested with 

MPS-GS. The TI is shown in Figure 4.2; it is a representation of fluvial geological 

architecture with a background shale facies (facies 1, white), two different lobe facies 

(facies two and three, light and dark grey), and a channel facies (facies four, black). This 

TI has been shown in other MPS papers in the past (Hoffman et al, 2007, Boisvert, 2007). 

The TI is 78x59x116 (533,832) cells. The proportions of the four facies in the TI are 

50%, 12.5%, 9%, and 28.5% respectively. 

Figure 4.3 shows the vertical proportion curve used to test the local proportion 

methods above. There are two distinct regions with lower proportions of the shale facies; 

of these, the upper has higher proportions of the lobe facies and the lower has a higher 

proportion of the channel facies. The very top and bottom of the vertical proportion curve 

represent zones of primarily shale facies. The proportions are assumed to have no areal 

variations. 
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Figures 4.4 through 4.6 show one unconditional realization created using MPS-GS 

with the additive, multiplicative, and permanence of ratios corrections, respectively, for 

matching local proportions. The control parameter is set to µ=1.0 or τ=1.0 in each case. 

All three realizations are similar in that they have grossly distorted vertical proportions; 

the region of higher lobe facies proportions has nearly all lobe facies, the region of higher 

channel facies proportions has nearly all channel facies, and the other layers have almost 

no facies other than shale. The source of this problem is that the updating procedure is 

applied every time an unsampled location is visited. Over several iterations, the updating 

dominates the conditional distribution P’(k). Reducing the control parameter slightly does 

not mitigate this effect; the difference between a value of µ that results in the problem in 

Figures 4.4 to 4.6 and one that does not reproduce the local facies proportions is very 

small and would be unpractical to find in practical cases. 

A proposed solution to this problem is to divide the local facies proportions into a 

number, NB, of discrete bins, Bk. The bins are equally distributed between the minimum 

nonzero local proportion of k, P
MIN

(k), and the maximum local proportion of k less than 

one, P
MAX

(k). The bins are numbered from 1 to NB and the bin for facies k at a specified 

location can be found by using the equation: 

 
( ) ( )

( ) ( )
int 1

LOC MIN

k BMAX MIN

P k P k
B N

P k P k ε

 −
= ⋅ +  − + 

 (4.13) 

The value of ε is a small constant used to prevent divide-by-zero errors. The 

conditional probabilities of each facies are updated to match the global proportions within 

each bin using a servosystem. The zeros in the local distributions are reproduced by 

setting the probability of that facies to zero on each visit to the unsampled location; the 

ones are reproduced by assigning the facies k with a local probability of one to that 

location and not revisiting it in the simulation path. 

Using multiple servosystems in this way, the updated conditional probability is: 

 ( ) ( ) ( ) ( )* ;LOC SIM

k
P k P k P k P k Bµ′  = + ⋅ −   (4.14) 

P
SIM

(k;Bk) is the current simulated proportion of facies k within bin Bk and the other 

variables are as before. Figure 4.7 shows an MPS-GS realization created using the 

multiple servosystem approach; the distinct zones with high probabilities of lobe and 

channel facies are clear and yet the local proportions do not dominate the realization. Ten 

bins are used for the local proportions. Figure 4.8 shows a graph of the vertical proportion 
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curve reproduction for the four different methods. The multiple servosystem method is 

clearly better than the other three approaches. 

 

   

   

   

Figure 4.2: Fluvial TI used for the local proportion example (Hoffman et al, 2005, 

Boisvert, 2007). 
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Figure 4.3: Vertical proportion curve used for the local proportion example. 
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Figure 4.4: An unconditional realization using the additive method for reproducing the 

vertical proportion curve. 
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Figure 4.5: An unconditional realization using the multiplicative method for reproducing 

the vertical proportion curve. 
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Figure 4.6: An unconditional realization using the permanence of ratios method for 

reproducing the vertical proportion curve. 
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Figure 4.7: An unconditional realization using the multiple servosystem method for 

reproducing the vertical proportion curve. 
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Figure 4.8a: Facies 1 vertical proportion curve reproduction for the four methods shown 

in the example. 

 

  

Figure 4.8b: Facies 2 vertical proportion curve reproduction for the four methods shown 

in the example. 
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Figure 4.8c: Facies 3 vertical proportion curve reproduction for the four methods shown 

in the example. 

 

  

Figure 4.8d: Facies 4 vertical proportion curve reproduction for the four methods shown 

in the example. 
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4.1.4 Image Cleaning 

As the MPS-GS algorithm proceeds, structure and order is introduced into the realization. 

Often there are regions where the convergence to geological structures resembling the TI 

is slow, and there is significant randomness left in a realization. For this reason, image 

cleaning is implemented during the MPS-GS algorithm to speed convergence and 

improve the continuity of the realizations. Two methods for image cleaning, the noise 

reduction factor and connectivity correction, involve modifications to the conditional 

distributions that are calculated at unsampled locations visited along the simulation path. 

Noise Reduction Factor 

One of the ways randomness is injected into a simulated domain is through small 

probabilities of facies occurring at unlikely locations. A small conditional probability for 

a facies, say 0.01, suggests that that facies is very unlikely at the location being 

considered. In a large domain with many thousands or millions of cells these small 

probabilities result in many of these facies being selected where they are unlikely. This 

randomness is propagated through the domain as nearby locations are visited. Eliminating 

the facies with these small probabilities would therefore reduce the randomness in the 

simulated domain and the both reduce CPU time and improve the final realizations. 

This is accomplished through the use of a noise reduction factor, NRF: 

 ( )
( ) ( )

( )
0 if 

otherwise

LOCP k NRF P k
P k

P k

′ < ⋅
′′ = 

′
 (4.15) 

The second updated conditional probability P”(k) is then used for selection of the 

new facies at the current location. The parameter NRF is typically set between 0.2 and 

0.4, although some fine tuning is required. The effect of the noise reduction factor is 

shown in an example below. 

Connectivity Correction 

The randomness that can occur in realizations is a problem in part because it breaks up 

the continuity or connectivity of the facies. This property is important as it can greatly 

influence the response characteristics of the realization and affect the uncertainty 

associated with the geomodel. It is therefore desirable to match the connectivity 

properties of the TI to reduce the randomness without creating a too-ordered realization. 
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The connectivity of a facies k at a given location is denoted as Ck and is equal to the 

number of immediately neighbouring locations that have the same facies. In 2D Ck can 

take a value from zero to four and in 3D can take a value from zero to six. An example of 

this is shown in Figure 4.9. The connectivity distribution for each facies can be calculated 

from the TI; the connectivity probabilities from the TI in Figure 4.3 are shown in Table 

4.2. 

 

  

Figure 4.9: An example of the connectivity at a location “?”. The white facies has a 

connectivity Cwhite=4 and the grey facies has Cgrey=2. 

 

Table 4.2: Connectivity probabilities for the four facies in the TI in Figure 4.3. 

  Facies 

  1 2 3 4 

C
o

n
n

e
ct

e
d

 C
e

ll
s 

0 0.001 0.002 0.002 0.000 

1 0.005 0.014 0.016 0.004 

2 0.030 0.110 0.130 0.020 

3 0.080 0.181 0.187 0.152 

4 0.158 0.379 0.433 0.212 

5 0.332 0.255 0.179 0.303 

6 0.393 0.058 0.054 0.310 

 

Using the probability of facies k having connectivity Ck, the corrected conditional 

probability is adjusted as follows: 

 ( ) ( ) ( ) ( ) ( ){ }| 0
k k k

P k P k P C E P C P Cη  ′′ ′= + ⋅ − >   (4.16) 

The value of η is a control parameter; E{P(Ck)| P(Ck)>0} is the expected value of the 

connectivity values that are found at least once in the TI. The maximum possible value of 

? 
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the expected value if all connectivity configuration are seen in the TI is 0.25 in 2D and 

0.166 in 3D; it is greater if not all configurations are seen in the TI. For example, facies 4 

in the TI in Figure 4.3 is never found with zero connectivity, as shown in Table 4.2. 

Using Equation 4.16, the connectivity corrections for the TI shown in Figure 4.3 are 

shown in Table 4.3. It can be seen that facies 2 and 3 are most likely to have four 

connected cells, and facies 1 and 4 are most likely to have five or six connected cells. 

 

Table 4.3: Connectivity corrections for the four facies in the TI in Figure 4.3. 

  Facies 

  1 2 3 4 

C
o

n
n

e
ct

e
d

 C
e

ll
s 

0 -0.142 -0.140 -0.141 -0.167 

1 -0.137 -0.129 -0.127 -0.163 

2 -0.112 -0.033 -0.013 -0.147 

3 -0.063 0.039 0.044 -0.015 

4 0.015 0.237 0.290 0.046 

5 0.189 0.112 0.036 0.136 

6 0.250 -0.085 -0.089 0.144 

 

The connectivity correction parameter η should be set to a low value to avoid 

interfering with the MPS in the conditional probabilities. A value of 0.1 to 0.2 is typically 

found to be adequate; the effects of different η values are shown in an example below. 

Freezing Cells 

In a large domain, it is possible that for a realization generated using MPS-GS different 

regions will converge at different rates. Near conditioning data or in areas with highly 

constraining secondary data, there is less freedom for the facies to change due to the 

influence of the data. Far away from conditioning data or in areas with no secondary 

information, the exploration of the state space in the local area will take longer to 

converge to high-probability states. This differential rate of convergence causes 

problems; stopping the MPS-GS algorithm when some areas are converged and correctly 

match the TI structure will leave randomness in other areas of the domain, while running 

the algorithm too long wastes CPU resources. 

A solution to the problem of differential convergence is to freeze those cells that have 

converged locally. This also reduces the noise in a realization; those cells will not have 
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the small chance of changing values to less-ordered structure later in the simulation. In 

MPS-GS, if the sum of the conditional probabilities is greater than or equal to 1.0 after 

the servosystem and noise reduction or connectivity updating is applied, the value of that 

cell is frozen and it is not visited again. This is not done until after the first loop over all 

locations to prevent random artifacts from appearing in a totally random image. 

Example 

To demonstrate the effect of the different noise reduction methods, consider the TI shown 

in the Figure 4.1. A number of MPS-GS simulations were performed using this TI. The 

parameters for all simulations were: G=4; M=16; N=4. The TI and all realizations for the 

example are 250x250 cells. The left of Figure 4.10 shows a MPS-GS realization using no 

noise reduction. It is clear that the channel structure is not reproduced in any meaningful 

way, and the long-range connectivity that is desirable in this case is not seen. The right of 

Figure 4.10 shows a realization using the frozen cells approach and no other noise 

reduction; there is a clear benefit to freezing cells once they have converged. 

 

   

Figure 4.10: Left: an MPS-GS realization using no noise reduction. Right: an MPS-GS 

realization using the frozen cells method and no other noise reduction. 

 

Figure 4.11 shows four MPS-GS realizations using the TI in Figure 4.1. The only 

difference between these realizations and the one at the bottom of Figure 4.10 is that a 

noise reduction factor was applied. Four different control parameter values were used, 

NRF=0.2, 0.4, 0.6, and 0.8. With NRF=0.2 there appears to be little improvement over 
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using only the freezing of cells; NRF=0.6 or 0.8 shows too much straight-line east-west 

or diagonal connectivity and little curvilinearity. The noise reduction factor leaves some 

random channel facies in the middle of non-channel areas; this is not seen in the TI. 

 

   

 

   

Figure 4.11: Four MPS-GS realizations using the noise reduction factor and freezing of 

converged cells. Top row: NRF=0.2 and NRF=0.4; Bottom row: NRF=0.6 and NRF=0.8. 

 

Figure 4.12 shows four MPS-GS realizations using the TI in Figure 4.1 and the 

connectivity correction of Equation 4.16. Four different control parameter values were 

used, η=0.2, 0.4, 0.6, and 0.8. The long-range connectivity is improved noticeably for low 

values of η while higher values significantly straighten the channels; in particular, for 

η=0.6 there is one channel that is nearly straight east-west across the domain. Using the 
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connectivity correction with a low value of η produces the best results with the fewest 

artifacts and best reproduction of the TI features. 

 

   

 

   

Figure 4.12: Four MPS-GS realizations using the connectivity correction and freezing of 

converged cells. Top row: η=0.2 and η=0.4; Bottom row: η=0.6 and η=0.8. 

4.2 Multiple Grids 

Multiple-point statistics are complex and require a significant amount of CPU time to 

calculate and memory to store, and this limits the size of a MPS template that can be 

used. This problem is somewhat mitigated by the use of MPEs; however, the spatial 

extent of the template is still too limited to cover the full size of geobodies that are 

typically simulated. For this reason, multiple grids are used in simulation; that is, a subset 
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of the cells in the domain on a regular grid are simulated first then frozen in place and 

used as conditioning data for subsequent finer grids within the domain. The last grid will 

include every cell in the domain. This approach is used successfully by other algorithms 

such as SNESIM (Liu, 2006) and SISIM (Deutsch and Journel, 1998). An example of the 

multiple grid approach is shown in Figure 4.13. 

 

  

Figure 4.13: An example of the multiple grid approach used in MPS-GS, three 

successively finer grids clockwise from top left. Grey squares are those cells in the 

current grid, black are frozen cells from previously-simulated grids. 

 

Using multiple grids reduces the relative size of the domain, speeding convergence at 

the coarser grids. Because of the relatively large amount of conditioning data available, 

structure on the finer grids is formed quicker and thus convergence is also faster on the 

finer grids. If there are g=1,…,G grids used, with g=1 being the finest grids, and every d
th

 

cell is used in the grid discretization then the domain on grid g is only 1/d
2(g-1)

 the size of 



 99 

the full domain in 2D or 1/d
3(g-1)

 in 3D. It is possible to discretize the domain differently 

along the X, Y, and Z axes but this will not be considered here. 

4.2.1 Grid Discretization 

The discretization of the grid d could be any integer value. Other algorithms use d=2 

(SNESIM, Liu, 2006, FILTERSIM, Zhang et al, 2006b) or d=4 (SISIM, Deutsch and 

Journel, 1998). The MPS-GS algorithm uses a discretization of 2; this has the advantage 

of every cell in the current grid being no farther than one cell away from the nearest 

previously-simulated location. The coarse grids thus have the maximum influence on the 

progressively finer grids. 

4.2.2 Conditioning Data 

Hard conditioning data are typically available when simulation is being carried out. The 

locations of these data are seldom aligned with the current simulation grid. The 

conditioning data are normally assigned to the nearest grid location and that cell is frozen; 

however, when using multiple grids this becomes more complicated. A solution is to 

assign the conditioning data to the nearest cells on the coarsest grid, then reassign the data 

to the nearest cells on each successively finer grid. The cells that were conditioning 

points on coarser grids need to be unfrozen and re-simulated to avoid artifacts. If a cell on 

a coarse grid is frozen with a hard data value and then left with that value as the 

conditioning datum is reassigned, two points (or more) will end up being frozen as that 

facies value near the conditioning data. This leads to artifacts and poor reproduction of 

small scale structure. Figure 4.14 shows an example of how hard conditioning data are 

assigned to multiple grid locations. 
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Figure 4.14: An example of the assigning of conditioning data to cells on progressively 

finer grids. The striped square is a sampled location; black squares are frozen cells; grey 

squares are active cells on the current grid. 

4.2.3 Populating Multiple Grids 

As each successive grid is simulated, every cell on the next finer grid must be populated. 

One-quarter (in 2D) or one-eighth (in 3D) of the cells in a grid (other than the first one) 

are populated by frozen locations from the previous coarser grid. The remaining cells 

must be populated somehow. Randomly populating finer grids using local univariate 

proportions can overwhelm the long-range structure imposed by the multiple grid 

procedure by breaking up continuous geo-objects. 

It is proposed instead to populate finer multiple grids (g<G) by replicating the large 

cell values to all smaller cells on the next-finer grid. The locations that are on the coarser 

grid are frozen while the remaining cells are assigned the same facies value. This 

approach maintains the structure that is formed at coarse grid discretizations and allows 

the fine structure to form gradually on each grid. There is also the advantage of reducing 

CPU time requirements; starting from a coarse structure results in faster convergence than 

starting from a random initial image because the initial state in the space is closer to a 

high-probability region than a random state. 

Figure 4.15 shows an example of the population of multiple grids in the MPS-GS 

algorithm. The large cells on a coarse grid have large-scale structure but do not contain 

small-scale features such as smooth curves. The finer scale grid injects the smaller-scale 

smoothly varying channels into the realization. 
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Figure 4.15: An example of the method used to populate finer grids in MPS-GS. 

Example 

Figure 4.16 shows four realizations using different numbers of grids, G=1, 2, 3, and 4. 

The TI in Figure 4.8 was used for inference of MPS; the TI and all realizations are 

250x250 cells in size; sixteen four-point MPEs were used in the MPS template; the finer 

grids were populated using the method outlined in Section 4.2.3; the local convergence 

freezing of cells from Section 4.1.4 was implemented; a connectivity correction was used 

with η=0.2. 

The consequence of not using multiple grids is apparent from Figure 4.16. With a 

template of size M=16 and N=4 for a total of 64 points (65 including the null vector), 

there is not enough long-range structure captured to effectively reproduce channel 

features. For G=2 there are more distinct objects but still too little long-range continuity. 

The case of G=3 shows more continuity but none of the channels span the full width of 

the simulated domain. Using four grids, G=4, reproduces the long-range continuity to a 
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large extent, with a number of channel features extending the full size of the domain in 

the east-west direction. 

 

   

 

   

Figure 4.16: Four MPS-GS realizations using different numbers of multiple grids. Top 

row: G=1 and G=2; Bottom row: G=3 and G=4. 

4.3 Stopping Criteria 

Some measure is needed to stop MPS-GS at a point in time at which the diminishing 

return in the improvement of a simulated realization makes it not worth the CPU time to 

continue. Some objective and easy to calculate measure is needed to diagnose when the 
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image has converged to an acceptable state and it is no longer worth continuing the 

algorithm. 

Three criteria are used to check for convergence in the MPS-GS algorithm: the 

number of changes per loop over the simulation path stabilizes; the number of changes in 

a loop is below a threshold; and a specified maximum number of loops is reached. 

4.3.1 Number of Changes per Loop 

At the start of the MPS-GS algorithm there is a significant mismatch between the TI and 

the simulated realization. This results in changes at a large number of locations early in 

the algorithm as structure is formed, then eventually stabilization to a relatively constant 

or small number of changes. This point can be detected by calculating the slope of the 

number of changes versus loop number; when the slope becomes positive the curve has 

leveled off or turned upwards slightly (Srivastava, 1992). An increase in the number of 

changes can be found when small variations in the number of changes are greater than the 

slope. 

An equivalent measure of the slope is the correlation coefficient between the loop 

number and the number of changes. The correlation coefficient has the advantage of 

being unitless and always within the range negative one to one. Using the most recent 

five loops to diagnose convergence, the correlation coefficient is calculated as: 
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In Equation 4.16, Nchi is the number of changes made in loop i; the loops are 

numbered from one to five. Figure 4.15 shows a graph of the number of changes and 

correlation coefficients for ten realizations of the MPS-GS algorithm. On the first loop 

the initial image is random and so there are a large number of changes as structure forms 

quickly; then there is a significant drop in the number of changes until about loop 10-15 

in all realizations. The correlation coefficients increase rapidly after loop 15 and the first 

non-negative occurrence for each realization is marked by a black dot; these are the 

points at which the algorithm would have been stopped. The number of changes per loop 
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continues to decline slowly beyond this point; however, the incremental gains in the 

image quality are not noticeable. 

The graphs in Figure 4.17 are very typical of the results seen in other exampoles. 

This characteristic shape, with a steep decline and a leveling off between 10 and 30 loops, 

is consistent for a large variety of TIs, template, and parameters. The correlation 

coefficient in Equation 4.16 is used as the primary stopping criterion for the MPS-GS 

algorithm. 

 

  

Figure 4.17: A graph of the number of changes per loop (black lines) and the correlation 

coefficients as in Equation 4.16 (grey lines) for ten realizations. The black dots mark the 

first occurrences of positive correlation coefficients. 

Effect of Freezing Cells and Multiple Grids 

The correlation coefficient criterion for stopping the MPS-GS algorithm can be affected 

by the freezing of cells as described in Section 4.1.4 and the non-random population of 

multiple grids from Section 4.2.3. The existing spatial structure of the geo-objects from 

coarser grids changes the early behavior of the number of changes; freezing cells changes 

the number of potential changes that could be made. Figure 4.18 shows a graph of the 

number of changes per loop and the number of non-frozen points remaining in the 

simulation path for ten MPS-GS realizations. 
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A notable feature in this case is the spike in the number of changes that occurs in the 

second loop before the steep decline in the number of changes. The spike is caused by 

relatively few changes occurring early in the algorithm due to the large-scale structure 

introduced by multiple grids, followed by a larger number of changes made as the finer 

details of the geo-objects are resolved and the right angles and blocky features are 

smoothed out. Like the previous results, the characteristic behaviour of the number of 

changes is consistent for a variety of TIs and parameters. 

 

  

Figure 4.18: A graph showing the number of changes per loop (red lines) and the number 

of points remaining in the random path (black lines) for ten realizations. 

4.3.2 Minimum Number of Changes 

In some cases the number of changes per loop continues to decrease until very few cells 

change facies values. For those cases, the correlation coefficient does not detect when the 

image has effectively converged. If a proportion of cells less than a threshold value are 

changed on a given loop the algorithm is stopped. This value is typically set to 0.01 or 

0.02. 
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4.3.3 Maximum Number of Loops 

If the first two stopping criteria are not met over a specified large number of loops, the 

MPS-GS algorithm is stopped. The other stopping criteria are almost always met between 

10 and 30 loops and therefore it makes sense to set the maximum number of loops to 30. 

This stops the MPS-GS algorithm from becoming trapped for a very long time and 

wasting CPU resources. 

The Markov chain may become trapped in a local area of the state space and cannot 

escape to properly sample from the joint distribution. It may be necessary to change the 

parameters to speed convergence. 

4.4 Simulation Path 

All unsampled locations are visited equally in the MPS-GS algorithm, except when a cell 

converges locally and is frozen. The order to visit the unsampled locations in each loop is 

a modeling decision. Two possibilities are considered: a spiral path starting near the 

conditioning data and a random path. 

4.4.1 Spiral Path 

A spiral path starts at the locations nearest the hard conditioning data and moves to the 

locations further away. The justification for this is the idea that the conditioning data 

should be given additional influence. A spiral path can introduce artifacts into a 

realization and can take a significant amount of CPU time to calculate for large domains 

(Zanon and Leuangthong, 2004).  

4.4.2 Random Path 

A random path is used in a number of simulation algorithms because it avoids biases and 

artifacts in the realizations. Every unsampled location is assigned a random value and the 

locations are visited from least to greatest. 
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4.4.3 Conditioning Data Artifacts 

Iterative algorithms have some different considerations than sequential algorithms. Using 

a random initial image may mask the influence of hard conditioning data and lead to 

artifacts, particularly near strings of data; Figure 4.19 shows three different examples of 

these types of artifacts. Using multiple grids or local facies proportions can help prevent 

these types of artifacts, but they remain a possibility. This can be a problem as earth 

sciences data are often available as strings, such as well logs or core samples. 

 

  

Figure 4.19: Three different types of artifacts seen near strings of conditioning data. 

 

Using a spiral simulation path exacerbates these artifacts. To illustrate this, consider 

the TI and true data shown in Figure 4.20. The geo-objects are relatively simple ellipsoids 

and have the same spatial structure in the true data and TI. The two strings of data meant 

to represent drillholes or wells were taken from the true data. 
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Figure 4.20: Training image (top) and true data (bottom) used to demonstrate 

conditioning data artifacts. 

 

Figure 4.21 shows three stages of a realization created using the MPS-GS algorithm 

and a path spiraling away from the conditioning data. The three stages are after 10, 50, 

and 100 loops and correspond to before the realization has converged, well after 

convergence, and after the algorithm has been allowed to run for much too long. The 

artifacts near the conditioning data become progressively worse when the algorithm is 

allowed to run beyond convergence. Freezing cells as in Section 4.1.4 was not used so as 

to intensify the artifacts for illustration. These artifacts appear at the boundary between 

the white and black facies in the conditioning data. Most of the geo-objects are centered 

on the string data, and this is apparent early in the algorithm even before convergence. 

This bias in the placement of the geo-objects is a serious problem with using a spiral path 

because normally there is no reason to believe that the wells or drillholes will sample the 

center of every body. 
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Figure 4.21: An example of the MPS-GS algorithm using a spiral path. One realization is 

shown after 10, 50, and 100 loops. 

 

Figure 4.22 shows another MPS-GS realization after 10, 50, and 100 loops; this 

realization uses a random path to visit each location. The geo-objects are randomly 

distributed about the domain with no visible bias. After 50 loops some artifacts have 

appeared near the black/white boundaries; these artifacts are clearer after 100 loops. The 

random simulation path fixes the problem of artifacts near string data, but the example 

demonstrates that it is important to stop the algorithm once the image has converged (as 

discussed in Section 4.3) to prevent other artifacts from appearing. 
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Figure 4.22: An example of the MPS-GS algorithm using a random path. One realization 

is shown after 10, 50, and 100 loops. 

4.5 Edge Effects 

Iterative algorithms have a number of additional artifacts near the edge of the simulated 

domain, or edge effects (Deutsch, 1992, Srivastava, 1992). The MPS-GS algorithm has 

the same problem: near the edge of the domain, the template used for calculation of the 

conditional distributions cannot be fully informed from the current state of the image. 
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This causes issues with the algorithm that need to be solved. Figure 4.23 shows an 

example of an MPS template near the edge of a simulated domain. Figure 4.24 shows an 

MPS-GS realization created using the TI in Figure 4.8; this realization clearly shows edge 

effects in the areas where the conditional distributions could not be calculated. 

 

  

Figure 4.23: An MPS template near the edge of a simulated domain. 

 

  

Figure 4.24: An MPS-GS realization with edge effects. 

 

Four solutions to edge effects are considered here: solving a linear set of equations to 

determine the exact conditional probabilities in the absence of data in some parts of the 

template; wrapping the grid on itself to fully inform all location in the template; reflecting 

the grid on itself to full inform all locations in the template; and expanding the grid, then 

trimming the added locations after simulation. 
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4.5.1 Exact Solutions 

One possible solution to edge effects is to use the available information and exactly solve 

for the conditional probabilities using that arrangement of MPEs and indicators. Problems 

with this approach are that there is no easily determined answer of how to rearrange the 

MPEs to use only the information that is available; the TI would have to be scanned a 

number of times, when currently it only has to be scanned once; and solving the full 

system of equations many times is very cumbersome, while it currently only has to be 

solved once. Solving the full system of MPE covariances takes much longer than the 

simulation itself and so it is not feasible to solve a number of additional systems for a 

small portion of the domain. These problems all make using exact solutions 

computationally inefficient and would not provide enough of an improvement to justify 

the CPU and memory requirements. 

4.5.2 Grid Wrapping 

Another possible solution to edge effects is to wrap the grid; that is, to treat the domain as 

a repeating phenomenon and to use the facies values of cells on the far side of the domain 

as conditioning information for calculating the conditional probabilities. Figure 4.25 

shows an example of an MPS template being wrapped at the edge of a domain. This 

methodology has the advantage of being computationally fast and easy to perform; the 

disadvantage is that it leads to wallpaper artifacts. Figure 4.26 shows an MPS-GS 

realization using the wrapped grid approach, as well as a demonstration of the wallpaper 

artifact. 

The main problem with the wallpaper artifact is that it has long-range effects, 

particularly in the presence of a trend. The issues that can be caused by wallpaper may 

not be apparent at first, but the impact on response characteristics or transfer functions 

can greatly change the uncertainty associated with a model. 
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Figure 4.25: An MPS template being wrapped at the edge of a domain. 

 

  

  

Figure 4.26: An MPS-GS realization using grid wrapping. The same realization is 

repeated four times to demonstrate the wallpaper artifact. 
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4.5.3 Grid Reflection 

Another option for dealing with edge effects is to reflect the grid back on itself. Figure 

4.27 shows an example of an MPS template being reflected at the edge of a domain. This 

can create some of the same problems as wrapping the grid because data values are being 

used as information in positions that are different than their true locations. The effects of 

reflecting the grid are shorter range than wrapping the grid, and occur within a single 

geobody rather than artificially connecting totally separate geobodies at opposite ends of 

the domain. Figure 4.28 shows an MPS-GS realization that uses the reflected grid 

method. 

 

  

Figure 4.27: An MPS template being reflected at the edge of a domain. 
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Figure 4.28: An MPS-GS realization using grid reflection (top left). The same realization 

is mirrored to demonstrate the effects of reflection. 

4.5.4 Grid Expansion 

The previously mentioned methods to mitigate the problem of edge effects all have 

significant computational cost or leave artifacts. A way to reduce the impact of the edges 

of a simulated domain is to increase the effective size of the domain and then trim the 

expanded portion after the simulation is complete. This increases the computational time 

because there are more unsampled locations to visit; however, if the expansion of the grid 

is small relative to the entire domain and the algorithm is sufficiently fast, the increase in 

CPU time should not be large. 

Figure 4.29 shows an MPS-GS realization that was created using a grid that was 

expanded by the greatest extent of the MPS template in the X and Y directions at the 
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coarsest grid level. The expanded portion of the domain was previously trimmed off of 

the realization. The realization also used the reflection of the edge of the grid. Artifacts 

caused by grid reflection are short-range as noted earlier; trimming the excess cells from 

the edge of the domain removes any noticeable effect of the reflection. The MPS-GS 

algorithm uses the expanded grid and reflection approach to eliminate edge effects. 

 

  

Figure 4.29: An MPS-GS realization using grid expansion and reflection. 

4.6 Long-term Convergence Properties 

As shown above, the MPS-GS algorithm can produce artifacts caused by randomness in 

the conditional probabilities (Section 4.1.4), conditioning data (Section 4.4.3), or edge 

effects (Section 4.5). To demonstrate that artifacts are not an issue and also that the 

stopping criteria in Section 4.3 are sufficient to identify when the image has converged, 

four conditional MPS-GS realizations were simulated. A total of 100 conditioning data 

points were used, scattered randomly in the domain. The parameters for each realization 

were the same: M=16, N=4, G=4, µ=1.0, η=0.2. Each realization was run for a specified 

number of loops without using stopping criteria. The numbers of loops were 1, 10, 100, 

and 1000. The four realizations are shown in Figure 4.30. 

From Figure 4.30, it may be seen that there is little change from the 10
th
 loop to the 

1000
th
. The realizations that ran for ten or more loops are similar to the unconditional 

realization in Figure 4.29, with no obvious edge effects or conditioning artifacts. There is 

some remaining noise that is not entirely eliminated by the connectivity correction. 
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Figure 4.30: Four conditional MPS-GS realizations created using the same parameters 

and run through a specified number of loops. Top left: 1 loop. Top right: 10 loops. Lower 

left: 100 loops. Lower right: 1000 loops. 

4.7 Evaluating Results 

A common way of evaluating the quality of MPS algorithms is by visual inspection of the 

results compared to the appearance of the TI. While visual inspection is useful as a first 

pass to quality control, it is desirable to have objective statistical measures of quality for 

the realizations. These measures are used for evaluation of the algorithm, ranking of 

realizations, comparison of different TIs in a given scenario, and assessing the 

reproduction of target statistics such as vertical proportion curves. 

The most common and simplest measures for evaluating simulation results use low-

order statistics. For algorithms that use high-order moments it is logical to use more 
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sophisticated measures. Uncertainty assessment often necessitates the use of transfer 

functions or response characteristics to better predict the recoverable resources in 

deposits. 

The criteria used to evaluate a model are subjective and dependent on the purpose for 

which the model was created. The minimum threshold for acceptance will not be the 

same for all criteria in all cases. Often a manager or non-technical person will make the 

final decision as to how much deviation from a target measure is considered acceptable. 

4.7.1 Lower-Order Statistics 

The simplest statistical measure in geological models of facies is the univariate 

proportions of the different facies. Global univariate proportions are generally known 

more accurately than other statistics and often have a great impact on the results. The 

simulated facies proportions should match the input quite closely; the actual threshold for 

how much difference from the target is acceptable is dependent on the relative 

importance of the different facies and the specific problem. 

Local univariate proportions, P
LOC

, should also be checked for reproduction of the 

model. Vertical proportion curves determined from hard data or local proportions from 

secondary sources such as seismic should be reproduced on average. 

Second-order statistics such as variograms should be checked for reproduction. The 

variogram is a simple spatial statistic to calculate. Comparison of the variogram for each 

facies is relatively fast and easy. The data variograms and TI variograms should both be 

used as references, although they should be close to one another for a TI to be justifiable. 

Cross variograms are more difficult to infer from data but can be used to compare a TI to 

simulated results. 

4.7.2 Multiple-Point Statistics 

The extension of spatial moments to higher orders can be used for both the selection of a 

TI appropriate for a given scenario and the assessment of the reproduction of the MPS in 

a TI (Boisvert, 2007, Boisvert et al, 2007b). The simplest MPS that can be used for 

comparison are runs, particularly when the hard conditioning data are in vertical strings 

such as wells or drillholes. Other linear arrangements of data are less common but could 

also be used if available. The comparison of the runs distributions of data, the TI, and the 
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results of simulation provides a good measurement for the connectivity and continuity of 

geobodies. 

Using a multiple-point histogram (MPH) is more difficult due to the relations 

between different facies. Linear templates can be used to calculate experimental MPHs 

from string data, but the extent of this is limited; if the order of the statistics is too high 

then it is not possible to infer a full MPH even in a limited template. Vertical linear MPH 

templates with no more than about four points can be used successfully if there are 

thousands of data points, giving a reference to compare to TIs and simulated realizations. 

Connectivity functions are nearly impossible to infer from sample data. The 

probability of connectivity between two locations can be determined in some cases using 

well tests or production data; these cases primarily apply to those projects that use flow. 

The use of connectivity functions mainly applies when comparing TI statistics to 

unconditional realizations for measuring the quality of different algorithms. 

4.7.3 Response Characteristics 

Simple statistical measures are useful for fast and easy comparison of algorithms or 

realizations. However, before model uncertainty to assess the risk in a project, some sort 

of transfer function or physical simulation is performed. These methods include flow 

simulation for petroleum reservoirs and mine design for mineral deposits. 
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5 Case Studies 

The MPS-GS algorithm can be used for facies modeling in a variety of geological 

settings. This chapter demonstrates three scenarios: a braided channel system; an eolian 

sandstone architecture; and a fluvial petroleum reservoir. The results are quantified and 

compared to SISIM (Deutsch and Journel, 1998). 

Common methods are used to compare the results. These methods include a 

qualitative visual inspection, measurement of the CPU time required, comparison of 

univariate proportions, and calculation of indicator variograms. More complex measures 

such as multiple-point histograms are also considered. 

5.1 Braided Channels 

The first scenario considered as a case study is a braided channel system. This type of 

geology is associated with petroleum reservoirs and features long, continuous high-

permeability channels in a background facies of low-permeability shale. The curvilinear 

connectivity that is seen in channel-type geological structure cannot be characterized by 

traditional variogram-based geostatistics. 

5.1.1 Data and Training Image 

Figure 5.1 shows a braided channel training image that is used for this case study. The TI 

is 250x250 cells and has 30% channel (black) facies and 70% shale (white) facies. If the 

TI were a real geological body the cell size would be on the order of tens of metres; the 

overall size of the domain would be 2.5km to 25km. The MPS-GS algorithm works on a 

cell-by-cell basis and so the size in any specific case does not matter as long as there is 

consistency between the TI and simulated domain. 
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Figure 5.1: The TI used for the braided channel study (Journel, 2004, Liu, 2006, 

Strebelle, 2002, among others). 

 

To quantify the high-order structure in the TI, a multiple-point histogram was 

calculated. The template used was nine points in a three-by-three square pattern. Figure 

5.2 shows the histogram with the classes sorted from greatest frequency to least; only the 

64 classes with frequencies above 0.0001 are shown. The MPH is a useful tool for 

evaluating the ability of an algorithm to reproduce high-order structure in unconditional 

realizations.  

For this case study, 50 data locations were extracted from the TI to be used in 

conditional simulation. Figure 5.3 shows a location map of the sample data. A notable 

feature of the data is the univariate proportions: 35, or 70%, of the samples are channel 

facies (black); 15, or 30%, are the background facies (white). This is the reverse of the TI 

proportions and tests the effectiveness of the servosystem. The data were selected to be 

scattered in a random-looking arrangement and also specifically for the mismatch to the 

TI univariate proportions. 
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Figure 5.2: The nine-point histogram of the braided channel TI. 

 

  

Figure 5.3: 50 data points extracted from the braided channel TI. 

 

A major consideration for the algorithm is the time required for simulation. MPS-GS 

calculates the optimal linear estimation weights from Equation 4.1 and stores them before 

proceeding with the simulation. This upfront computational effort is significant and for 

large MPEs can be greater than the time required for simulation. Table 5.1 shows the 

CPU time needed to create a template and then scan the TI and solve the system of 
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equations to find the optimal weights. Four cases are considered: M=32 and N=32; M=16 

and N=4; M=10 and N=6; M=8 and N=8. The scanning of the TI is the driving factor for 

the smaller MPEs; for eight-point events solving the system of equations is more time-

consuming. Four grids were used in simulation and so four systems of equations had to 

be solved. 

 

Table 5.1: CPU time required to create the templates and calculate MPS for the braided 

channel study. 

 Time Required (mm:ss) 

Statistics (MxN) Template Creation MPS Calculation 

32x2 0:02 2:50 

16x4 0:04 2:03 

10x6 0:05 2:16 

8x8 0:07 6:59 

5.1.2 Unconditional Simulation 

Unconditional simulation was performed using the TI shown in Figure 5.1. Twenty 

realizations were simulated using the four different MPS templates described above; 

twenty SISIM realizations were simulated for use as a baseline comparison. Table 5.2 

shows the time required for simulation in each case. All simulations were performed 

using four grids; the MPS-GS realizations used a servosystem parameter of µ=1.0 and a 

connectivity correction factor of η=0.2. A maximum of thirty loops was imposed for 

stopping, but this limit was rarely reached. All realizations are the same size as the TI, 

250x250 cells. 
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Table 5.2: CPU time required to simulate twenty unconditional realizations for the 

braided channel study. 

Statistics (MxN) Time Required (mm:ss) 

32x2 1:10 

16x4 1:01 

10x6 1:00 

8x8 1:00 

SISIM 0:33 

 

Figures 5.4 through 5.8 show the results of the unconditional simulations, one figure 

for each case. Each Figure has three parts: (a) two unconditional realizations; (b) the 

indicator variograms of ten unconditional realizations compared to the TI variograms; (c) 

a comparison of the TI MPH and the P5, median, and P95 simulated MPH frequencies. 

From part (a) of the Figures, it can be seen that the MPS-GS realizations better 

reproduce the long-range continuity and channel structure than the SISIM realizations. 

Comparing the variogram reproduction in part (b) of the Figures, the east-west 

variograms are reproduced successfully for all cases; the MPS-GS realizations using 

larger MPEs have slightly too-low variograms but the range and shape are appropriate. 

The north-south direction shows a clear difference in the variogram reproduction between 

simulation methods, as MPS-GS successfully reproduces the channel/background 

repeating pattern and thus has variogram values above the sill. SISIM does not reproduce 

this pattern. 

Part (c) of Figures 5.4 through 5.8 shows the TI MPH from Figure 5.2 and the P5, 

P50, and P95 frequencies from the simulations. Major similarities and differences 

between the frequencies can be observed. Figure 5.9 shows a graph of the absolute MPH 

differences from the TI for the five different cases. The P50 realization values are shown 

as well as the P5 to P95 range. The MPS-GS realizations match the nine-point TI 

histogram much better than the SISIM results; the MPS-GS cases have absolute 

differences in the range of 0.05 to 0.10, while the SISIM realizations have differences of 

0.21 to 0.31. 
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Figure 5.4a: Two unconditional MPS-GS realizations using M=32 and N=2. 

   

Figure 5.4b: The indicator variograms of the TI (red line), data (black dots) and 20 MPS-

GS realizations (blue lines) in the east-west (left) and north-south (right) directions. 

  

Figure 5.4c: The MPH reproduction of 20 MPS-GS realizations. Bars: reference TI MPH; 

solid line: median MPH frequencies; dashed lines: P5 and P95 MPH frequencies. 
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Figure 5.5a: Two unconditional MPS-GS realizations using M=16 and N=4. 

   

Figure 5.5b: The indicator variograms of the TI (red line), data (black dots) and 20 MPS-

GS realizations (blue lines) in the east-west (left) and north-south (right) directions. 

  

Figure 5.5c: The MPH reproduction of 20 MPS-GS realizations. Bars: reference TI MPH; 

solid line: median MPH frequencies; dashed lines: P5 and P95 MPH frequencies. 
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Figure 5.6a: Two unconditional MPS-GS realizations using M=10 and N=6. 

   

Figure 5.6b: The indicator variograms of the TI (red line), data (black dots) and 20 MPS-

GS realizations (blue lines) in the east-west (left) and north-south (right) directions. 

  

Figure 5.6c: The MPH reproduction of 20 MPS-GS realizations. Bars: reference TI MPH; 

solid line: median MPH frequencies; dashed lines: P5 and P95 MPH frequencies. 
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Figure 5.7a: Two unconditional MPS-GS realizations using M=8 and N=8. 

   

Figure 5.7b: The indicator variograms of the TI (red line), data (black dots) and 20 MPS-

GS realizations (blue lines) in the east-west (left) and north-south (right) directions. 

  

Figure 5.7c: The MPH reproduction of 20 MPS-GS realizations. Bars: reference TI MPH; 

solid line: median MPH frequencies; dashed lines: P5 and P95 MPH frequencies. 
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Figure 5.8a: Two SISIM realizations. 

   

Figure 5.8b: The indicator variograms of the TI (red line), data (black dots) and 20 SISIM 

realizations (blue lines) in the east-west (left) and north-south (right) directions. 

  

Figure 5.8c: The MPH reproduction of 20 SISIM realizations. Bars: reference TI MPH; 

solid line: median MPH frequencies; dashed lines: P5 and P95 MPH frequencies. 
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Figure 5.9: A graph of the absolute MPH differences for each case of the braided channel 

study between twenty realizations and the TI. Bars: P50 realization difference; lines: P5 

and P95 realizations. 

5.1.3 Conditional Simulation 

Hard sample data is often available in earth sciences applications. Producing realizations 

that reproduces this data and the TI is the goal of MPS algorithms such as MPS-GS. 

Twenty realizations were simulated using the four MPS-GS cases and SISIM. The time 

required for each set of twenty realizations is shown in Table 5.3; the results are very 

similar to the unconditional scenario. All parameters were the same as the unconditional 

case. 

Figures 5.10 through 5.14 show the results of the conditional simulations. Each 

Figure is made up of two parts: (a) two conditional realizations; (b) a map of the 

simulated probability of channel (black) facies at all locations in the domain. From part 

(a) it can be seen that the realizations appear much the same as the unconditional 

realizations shown above; this demonstrates that MPS-GS is capable of using hard data 

without losing the ability to reproduce the geometric structure of the TI. 

Part (b) of Figures 5.10 through 5.14 shows the ranges of uncertainty near the data 

for the prior structure model used in each case. 
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Table 5.3: CPU time required to simulate twenty conditional realizations for the braided 

channel study. 

Statistics (MxN) Time Required (mm:ss) 

32x2 1:12 

16x4 1:04 

10x6 1:00 

8x8 1:00 

SISIM 0:29 

 

   

Figure 5.10a: Two conditional MPS-GS realizations using M=32 and N=2. 

 

   

Figure 5.10b: The simulated proportions of sand for 20 conditional MPS-GS realizations. 
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Figure 5.11a: Two conditional MPS-GS realizations using M=16 and N=4. 

 

   

Figure 5.11b: The simulated proportions of sand for 20 conditional MPS-GS realizations. 
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Figure 5.12a: Two conditional MPS-GS realizations using M=10 and N=6. 

 

   

Figure 5.12b: The simulated proportions of sand for 20 conditional MPS-GS realizations. 
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Figure 5.13a: Two conditional MPS-GS realizations using M=8 and N=8. 

 

   

Figure 5.13b: The simulated proportions of sand for 20 conditional MPS-GS realizations. 
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Figure 5.14a: Two conditional SISIM realizations. 

 

   

Figure 5.14b: The simulated proportions of sand for 20 conditional SISIM realizations. 

 

The simulated sand proportions from Figures 5.10 through 5.14 were used to measure 

the accuracy and precision of the different MPS-GS cases and SISIM. Figure 5.15 shows 

an accuracy plot for the different cases. The horizontal axis is the simulated probability of 

sand and the vertical axis is the actual probability of finding sand at locations with those 

simulated probabilities. A perfectly accurate method would show up as a 45-degree line 

on an accuracy plot, and a totally inaccurate method would have a horizontal line at the 

global proportion of sand. The five simulation cases considered in this case study cross 

the 1:1 line at about the global proportion of 30%, and the actual proportion of sand 
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compared to the simulated probability tends towards the global mean particularly for very 

high and very low simulated probabilities. The methods are all about equally accurate. 

 

  

Figure 5.15: Accuracy plot for the braided channel conditional simulations.  

 

A precise facies simulation method has more locations with very high and low 

simulated probabilities. Figure 5.16 shows the histograms of simulated sand probabilities 

for each conditional simulated case. Using the spread of the distribution of simulated 

probabilties as a measure of precision, the MPS-GS case with M=32 and N=32 is the 

most precise; fewer and larger events leads to less precision and SISIM is the least 

precise case. 
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Figure 5.16: Precision of the braided channel conditional simulations. 

5.1.4 SNESIM Realizations 

To better assess the MPS-GS results, the SNESIM algorithm was used to generate twenty 

unconditional and twenty conditional realizations using the braided channel TI. The 

version of SNESIM that was used was from the SGeMS software (Remy et al, 2008) that 

is available as a free download. This comparison was carried out as part of an internship 

for ConocoPhillips and as such the results will not be shown in great detail. 

Figure 5.17 shows the results of unconditional simulation using the SNESIM 

algorithm. Part (a) shows two unconditional realizations and part (b) shows the variogram 

reproduction for twenty unconditional realizations. Comparing Figure 5.17a to Figures 

5.4a through 5.8a, the SNESIM results have more channels that completely span the 

domain than the other results; otherwise the realizations appear visually similar to the 

MPS-GS realizations that use larger events (N=6 and 8). The variogram reproduction in 

Figure 5.17b is similar to the MPS-GS realizations. The MPH difference between the 

unconditional SNESIM realizations and the TI has a P50 of 0.12 with a range from 0.08 
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to 0.18; comparing that to Figure 5.9, the MPH difference is greater for SNESIM than for 

MPS-GS but less than for SISIM. 

 

   

Figure 5.17a: Two unconditional SNESIM realizations. 

 

   

Figure 5.17b: The indicator variograms of the TI (red line), data (black dots) and 20 

SNESIM realizations (blue lines) in the east-west (left) and north-south (right) directions. 

 

Figure 5.18 shows the results of conditional SNESIM simulation. Part (a) shows two 

conditional realizations and part (b) shows the simulated probability of channel facies 

over twenty realizations. The conditional realizations appear similar to the unconditional 

results, with only a few small patches of facies that appear out of place near the 

conditioning data. The accuracy of the conditional realizations is similar to the MPS-GS 

and SISIM results shown in Figure 5.15. The distributions of simulated channel 

probabilities has a variance of 0.036, which is in the middle of the pack of the MPS-GS 
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results; better than the lower-order MPEs but not as high as the large (N=6 and N=8) 

MPEs. 

 

   

Figure 5.18a: Two conditional SNESIM realizations. 

 

   

Figure 5.18b: The simulated proportions of sand for 20 conditional SNESIM realizations. 

 

The MPS-GS results compare favourably to SNESIM based on simple statistical 

measures such as a four-point MPH or local precision; however, the long-range 

connectivity of the SNESIM realizations would have a significant impact on response 

characteristics. 
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5.2 Eolian Sandstone 

The second case study is a more complex scenario, an eolian sandstone model. The 

characteristic curved laminae for this type of geology are obvious to a human observer 

but are very difficult to characterize and reproduce using statistical methods. The data 

include three facies and the samples are not taken from the TI, resulting in mismatch 

between the structure of the true values and the TI. In addition, both the true data and the 

TI are taken from outcrop photographs, increasing the realism of the scenario. The scale 

of the data is in the order of centimeters for the whole domain. 

5.2.1 Data and Training Image 

The left side of Figure 5.19 shows the reference dataset that was used as the source for 

the true data (Deutsch, 1992); the right side shows the true data for this case study, which 

is a categorized, cleaned, and flipped version of the original. The true image is 164x85 

cells and has 25% facies 1 (white), 51% facies 2 (grey), and 24% facies 3 (black). 

 

   

Figure 5.19: The reference dataset (left) and cleaned image (right) used as the true data 

for the eolian sandstone study. 

 

The top of Figure 5.20 shows another eolian sandstone dataset (Deutsch, 1992); the 

lower part of Figure 5.20 shows the cleaned version of the image that was used as the TI 

for this case. The features in the TI are similar to those seen in the true data, but not 

exactly the same. The dune structure and long-range connectivity in facies 3 is noticeable 

in both images; nonlinear connectivity is one of the driving properties in a number of 

applications. The TI is 300x200 cells in size and has 22% facies 1, 56% facies 2, and 22% 

facies 3. The univariate proportions are similar to the true data. 
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Figure 5.21 shows 100 sample points that were taken from the true data image. The 

samples were taken from ten sampling lines. The univariate proportions of the sample 

data are 25% facies 1, 51% facies 2, and 24% facies 3. 

Figure 5.22 shows the indicator variograms for the three facies in the X and Y 

directions for the true data, TI, and sample data. The variograms are not corrected for 

differences in univariate proportions. Facies 1 shows a trend in the X direction in the true 

and sample data sets, but not in the TI. The true and sample data show more cyclicity for 

all facies in the Y direction than the TI does. These two minor disparities are the only 

noticeable differences between the TI and true/sample data variograms. 

Figure 5.23 shows the four-point histograms of the TI and true data, sorted from 

greatest to least frequencies in the TI. There are a total of 3
4
=81 classes; only those with 

frequencies greater than 0.0001 are shown. The TI and true data histograms are similar, 

with an absolute difference of 0.142. Several of the lower-frequency classes have 

differences that appear significant, but because of the logarithmic scale of the MPH the 

absolute difference is not greatly affected. 
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Figure 5.20: The reference dataset (top) and cleaned image (bottom) used as the TI in the 

eolian sandstone study. 
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Figure 5.21: 100 data points extracted from the eolian sandstone true dataset. 

 

  

Figure 5.22: Indicator variograms of the eolian sandstone true dataset (red line), sample 

data (black dots), and TI (black line). 
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Figure 5.23: The four-point histograms of the true dataset and TI for the eolian sandstone 

study. 

 

Three cases were considered for the MPS-GS algorithm in this study: M=32 and N=2; 

M=16 and N=4; M=8 and N=6. Eight-point events were not used because of the 

dimensionality and the resulting size of the LHS matrix. The CPU time required to create 

the MPS templates and solve the system of equations in the three cases is shown in Table 

5.4. The template creation is again very fast; solving the system of equations becomes 

cumbersome for six-point events, taking nearly three hours. Five grids were used in 

simulation and so five systems of equations had to be solved. 

 

Table 5.4: CPU time required to create the templates and calculate MPS for the eolian 

sandstone study. 

 Time Required (mm:ss) 

Statistics (MxN) Template Creation MPS Calculation 

32x2 0:02 3:29 

16x4 0:04 12:41 

8x6 0:05 174:55 
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5.2.2 Unconditional Simulation 

Unconditional simulation was performed to test how well the MPS-GS algorithm can 

reproduce complex features found in the eolian sandstone TI. Twenty realizations were 

run using each of the three MPS templates described above, as well as twenty SISIM 

realizations for comparison. Table 5.5 shows the time required to simulate twenty 

realizations in the four cases. All simulations were performed using five grids; the MPS-

GS realizations used a servosystem parameter of µ=1.0 and a connectivity correction 

factor of η=0.1. A maximum of thirty loops was imposed for stopping, but this limit was 

rarely reached. All realizations are the same size as the true data, 164x85 cells. 

 

Table 5.5: CPU time required to simulate twenty unconditional realizations for the eolian 

sandstone study. 

Statistics (MxN) Time Required (mm:ss) 

32x2 0:41 

16x4 0:38 

8x6 0:34 

SISIM 0:25 

 

Figures 5.24 through 5.27 show the results of unconditional simulations for the four 

cases, one case in each Figure. Each Figure has two parts: (a) two unconditional 

realizations for the case shown in that Figure; (b) the indicator variograms for each of the 

three facies in the X and Y directions. The variogram sills are not standardized. 

Visually comparing the realizations from part (a) of Figures 5.24 to 5.27, the cases 

using higher-order statistics contain more of the long-range continuity of facies 3 (black) 

that is seen in the TI; the SISIM is the worst for this type of structure and the 32x2 case is 

the next worst. The alternating thick and thin sections of facies 3 are evident in the 16x4 

and 8x6 cases. 

The variograms in part (b) of the Figures show that the second-order statistics are 

reproduced adequately in all cases. All three facies show cyclicity in the Y direction and 

the correct range of correlation in the X direction; variations in the sill are caused by 

slightly different univariate proportions between the realizations and TI. 
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Figure 5.24a: Two unconditional MPS-GS realizations using M=32 and N=2. 

  

Figure 5.24b: The indicator variograms of the true dataset (red line), sample data (black 

dots), TI (black line) and 10 MPS-GS realizations (blue lines) in the X (left) and Y (right) 

directions for facies 1 (top), facies 2 (middle) and facies 3 (bottom). 
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Figure 5.25a: Two unconditional MPS-GS realizations using M=16 and N=4. 

  

Figure 5.25b: The indicator variograms of the true dataset (red line), sample data (black 

dots), TI (black line) and 10 MPS-GS realizations (blue lines) in the X (left) and Y (right) 

directions for facies 1 (top), facies 2 (middle) and facies 3 (bottom). 
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Figure 5.26a: Two unconditional MPS-GS realizations using M=8 and N=6. 

  

Figure 5.26b: The indicator variograms of the true dataset (red line), sample data (black 

dots), TI (black line) and 10 MPS-GS realizations (blue lines) in the X (left) and Y (right) 

directions for facies 1 (top), facies 2 (middle) and facies 3 (bottom). 
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Figure 5.27a: Two unconditional SISIM realizations. 

  

Figure 5.27b: The indicator variograms of the true dataset (red line), sample data (black 

dots), TI (black line) and 10 SISIM realizations (blue lines) in the X (left) and Y (right) 

directions for facies 1 (top), facies 2 (middle) and facies 3 (bottom). 
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Figure 5.28 shows a graph of the absolute MPH differences between the TI MPH 

shown in Figure 5.23 and the MPHs calculated from the realizations. The 32x2 and 16x4 

MPS-GS cases perform the best by this measure, with P50 differences of 0.11. The 8x6 

case has a P50 difference of 0.15 and SISIM has a P50 of 0.25. The 16x4 case has less 

P10-P90 range than the 32x2 case. Four-point MPEs offer the greatest compromise 

between high-order information content and practicality.   

The greater mismatch in high-order statistical reproduction for larger MPEs is caused 

by the limited TI size, the random initial images used in MPS-GS, and the limitations in 

solving the system of equations. For three facies and N=6, each MPE has 729 classes to 

be informed and with a TI size of 60,000 cells not every class will be informed. A 

random initial image is necessary in MPS-GS, as was shown in Section 3.4. A random 

image will have many more uninformed patterns for large MPEs than for smaller ones, 

causing degradation of the realizations for very large MPEs. The greatest limitation of 

MPE size is solving the system of equations to determine the optimal linear estimation 

weights: for K=3, M=8, and N=6, the maximum size of the system is 5976x5976, and 

because of currently available CPU speed it must be limited to less than half that size 

even if more MPEs are informed. 

 

  

Figure 5.28: A graph of the absolute MPH differences for each case of the eolian 

sandstone study between twenty realizations and the TI. Bars: P50 realization difference; 

lines: P5 and P95 realizations. 
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5.2.3 Conditional Simulation 

The 100 sample data points shown in Figure 5.20 were used in conditional simulation for 

the eolian sandstone study. An ideal method would produce realizations that look similar 

to the true data in Figure 5.18. Twenty realizations were simulated using the three MPS-

GS cases and SISIM. The time required for each set of twenty realizations is shown in 

Table 5.6; the results are very similar to the unconditional scenario. All parameters were 

the same as the unconditional case. 

 

Table 5.6: CPU time required to simulate twenty conditional realizations for the eolian 

sandstone study. 

Statistics (MxN) Time Required (mm:ss) 

32x2 0:41 

16x4 0:36 

8x6 0:30 

SISIM 0:26 

 

Figures 5.29 through 5.32 show the results of the conditional simulations. Part (a) of 

each Figure shows two conditional realizations for that case; part (b) shows the simulated 

probability of each facies at all locations in the domain. Visually the conditional 

realizations in parts (a) look similar to the unconditional realizations for all cases; there 

are no obvious artifacts or discontinuities. The relationship between facies 2 and 3, with 

the grey facies on top of the black facies, is seen much more in the MPS-GS realizations 

than in the SISIM realizations. In part (b) of the Figures the cases using higher-order 

statistics show more connectivity over all realizations than the lower-order cases, 

particularly for facies 3. The SISIM and 32x2 case show more “bulls-eyes” around the 

data locations rather than long continuous structures. 
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Figure 5.29a: Two conditional MPS-GS realizations using M=32 and N=2. 

 

   

  

Figure 5.29b: The simulated proportions of facies 1 (top left), facies 2 (top right), and 

facies 3(bottom) for 20 conditional MPS-GS realizations. 
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Figure 5.30a: Two conditional MPS-GS realizations using M=16 and N=4. 

 

   

  

Figure 5.30b: The simulated proportions of facies 1 (top left), facies 2 (top right), and 

facies 3(bottom) for 20 conditional MPS-GS realizations. 
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Figure 5.31a: Two conditional MPS-GS realizations using M=8 and N=6. 

 

   

  

Figure 5.31b: The simulated proportions of facies 1 (top left), facies 2 (top right), and 

facies 3(bottom) for 20 conditional MPS-GS realizations. 
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Figure 5.32a: Two conditional SISIM realizations. 

 

   

  

Figure 5.32b: The simulated proportions of facies 1 (top left), facies 2 (top right), and 

facies 3(bottom) for 20 conditional SISIM realizations. 

 

The simulated proportions of facies from part (b) of Figures 5.29 to 5.20 and true 

data from Figure 5.19 were used to assess the accuracy of the simulation methods. Figure 

5.33 shows an accuracy plot for the four simulation cases considered. The simulated 

probability of facies is shown on the horizontal axis, and the actual probability of finding 

that facies in the true data is shown on the vertical axis. The accuracy of all of the cases is 

about the same. 
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Figure 5.33: Accuracy plot for the eolian sandstone conditional simulations. 

 

The spread of the histogram of simulated facies probabilities was used to measure the 

precision of the simulation methods. Figure 5.34 shows the histogram of simulated facies 

probabilities and the variance of each distribution. The greatest precision was attained by 

the MPS-GS case with M=8 and N=6; the least precise case was the MPS-GS simulation 

using M=32 and N=2. The number and size of MPEs has a significant impact on the 

results.  
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Figure 5.34: Precision of the eolian sandstone conditional simulations. 

5.3 Petroleum Reservoir 

A larger, 3D case study was carried out to test the effectiveness of the MPS-GS algorithm 

on a real data set that was provided by the ConocoPhillips Company 

(http://www.conocophillips.com). Thirty-three vertical wells from a fluvial petroleum 

reservoir were used, containing 3449 sample points. An additional 10 wells containing 

1116 sample points were not used in the simulation but were used for jackknife cross 

validation. There are four facies in the reservoir: background shale, low-quality sand, 

medium-quality sand, and high-quality sand. The global proportions of the facies are 

55%, 11%, 14%, and 20% respectively. The major direction of correlation is along the X 

axis, with less correlation in the Y and Z directions. 

There is the most certainty about the structure of facies 1 (white) and facies 4 (black). 

Facies 1 is background shale. The structure of facies 4 is channels that are high-quality, 

and relatively large and continuous compared to the facies 2 and 3 geo-objects. Facies 2 

(light grey) and 3 (dark grey) are more ambiguous and are closely associated with one 

another. Facies 3 could be channels or elliptical lobes and facies 2 could be levees or 
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debris. The major controlling factors associated with the reservoir are the continuity and 

connectivity of the best (facies 4) and worst (facies 1) quality material. 

5.3.1 Training Images 

For this case study, there is a large amount of uncertainty associated with the data. There 

is no definitive answer on what TI is the most appropriate, and for this reason several 

were considered. The well data and geological setting suggest a fluvial environment, so 

object-based modeling was used to create unconditional realizations of channel-type 

systems. Five scenarios are considered as potential TIs: 

1. Facies 3 is made up of thinner channels than facies 4, and facies 2 is made up of 

levees associated with the facies 3 channels. 

2. The same case as #1, but with thinner and narrower channels and levees. 

3. Facies 3 is made up of thinner channels than facies 4, and facies 2 is made up of lobes 

of debris within the facies 3 channels. 

4. Facies 3 is made up of sandy lobes and facies 2 is lower-quality sand within the 

lobes. 

5. Facies 2 and 3 are made up of similar-sized lobes that are found in close association 

with one another. 

The closest scenario to the conceptual model of geology is #1. A TI was created for 

each scenario using the object-based modeling in the Petrel software 

(http://www.slb.com/content/services/software/geo/petrel/index.asp). The TIs are all 

150x150x75 for a total of 1,687,500 cells, which is larger than the reservoir models. The 

extra size of the TIs compared to the simulation domain allows better inference of long-

range structure. Figures 5.35 through 5.39 show the five TIs. Each Figure has three parts: 

(a) three slices in each of the XY, XZ, and YZ planes; (b) a graph comparing the MPHs 

of the well data and the TI; (c) indicator variograms of the well data and TI for the four 

facies in the X, Y, and Z directions. 

Part (a) of the Figures is useful for visualization of the structure of the geo-objects 

but provides no quantifiable measurement of the statistical closeness of the TIs to the 

well data. Part (b) offers a quantifiable measure in the form of a MPH. A four-point 

vertical template was used, for a total of 256 possible classes. From the graphs, TI #2 is 

clearly a worse match to the well data than the other TIs. A more robust measure than 

visual inspection is the absolute difference between the MPHs; Table 5.7 shows a 
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summary of the absolute MPH differences of the TIs from the well data. TIs #3 and 4 are 

the best by this measure, with TI #1 also being a reasonable choice. TI #2 is clearly the 

worst and TI #5 is also a poor representation of the spatial statistics. The patterns 

represented by the MPH classes are shown below the graphs because the vertical template 

used lends itself to an easier graphical display than most MPH templates. 

The variograms in part (c) of the Figures are a good measure for the purpose of 

rejecting a TI, but cannot be used as the only measure to select the best TI. Like 

univariate statistics, many TIs may match the variograms but be a poor representation of 

the connectivity and continuity of the real geology. In this case (and in most real-world 

applications) the vertical variograms are of particular interest due to the data being 

obtained from vertical wells. TIs #1, 3, 4, and 5 all match the vertical variograms for all 

four facies to within a close tolerance; only TI #2 is clearly not a good choice based on 

the variograms. All of the channel-type facies in the TIs show cyclicity in the X direction 

because of the perfectly repeating patterns used, and so the variograms return to values of 

zero at the wavelength lag distance. Deviations from an ideal sinusoid in the realizations 

will come from the simulation algorithm instead of the inferred statistics. 

Based on the conceptual geology, variograms, and MPHs, TIs #1, 3, and 4 were used 

for simulation with the MPS-GS algorithm in this case study. The results using each TI 

were compared, and taken together can be used to assess the full range of uncertainty; in 

this case there is uncertainty in the TI as well as ergodic fluctuations in the simulated 

realizations. 

All of the TIs were used to create templates and calculate optimal linear weights 

using the parameters M=12, N=4, and G=4. With four facies, four points is the largest 

practical size for a MPE as there are a possible 256 classes in the MPH for each event. 

Using twelve MPEs gives a potential for over 3000 informed classes. Trimming 

uninformed or low-frequency classes must be done to limit the size of the matrices to be 

inverted. Table 5.8 shows the CPU time required to create the templates and solve the 

systems of equations for each TI. The template creation is fast at less than a minute and a 

half. Solving the systems of equations takes over an hour in all three cases and is related 

to the randomness and hence the number of informed classes. TI #1 is the fastest case 

while TI #4 is the slowest due to the smaller structures and the greater number of 

informed classes. 
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Figure 5.35a: TI #1 for the petroleum reservoir case study. 

 

  

Figure 5.35b: The MPH of the well data (bars) and TI #1 (line). The MPH patterns are 

shown under the horizontal axis. 
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Figure 5.35c: Indicator variograms for the well data (points) and TI #1 (line) in the X, Y, 

and Z directions (left to right) for the four facies, top to bottom: facies 1 (white), facies 2 

(light grey), facies 3 (dark grey), and facies 4 (black). 
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Figure 5.36a: TI #2 for the petroleum reservoir case study. 

 

  

Figure 5.36b: The MPH of the well data (bars) and TI #2 (line). The MPH patterns are 

shown under the horizontal axis. 
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Figure 5.36c: Indicator variograms for the well data (points) and TI #2 (line) in the X, Y, 

and Z directions (left to right) for the four facies, top to bottom: facies 1 (white), facies 2 

(light grey), facies 3 (dark grey), and facies 4 (black). 
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Figure 5.37a: TI #3 for the petroleum reservoir case study. 

 

  

Figure 5.37b: The MPH of the well data (bars) and TI #3 (line). The MPH patterns are 

shown under the horizontal axis. 
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Figure 5.37c: Indicator variograms for the well data (points) and TI #3 (line) in the X, Y, 

and Z directions (left to right) for the four facies, top to bottom: facies 1 (white), facies 2 

(light grey), facies 3 (dark grey), and facies 4 (black). 
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Figure 5.38a: TI #4 for the petroleum reservoir case study. 

 

  

Figure 5.38b: The MPH of the well data (bars) and TI #4 (line). The MPH patterns are 

shown under the horizontal axis. 
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Figure 5.38c: Indicator variograms for the well data (points) and TI #4 (line) in the X, Y, 

and Z directions (left to right) for the four facies, top to bottom: facies 1 (white), facies 2 

(light grey), facies 3 (dark grey), and facies 4 (black). 
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Figure 5.39a: TI #5 for the petroleum reservoir case study. 

 

  

Figure 5.39b: The MPH of the well data (bars) and TI #5 (line). The MPH patterns are 

shown under the horizontal axis. 
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Figure 5.39c: Indicator variograms for the well data (points) and TI #5 (line) in the X, Y, 

and Z directions (left to right) for the four facies, top to bottom: facies 1 (white), facies 2 

(light grey), facies 3 (dark grey), and facies 4 (black). 

 

Table 5.7: Absolute MPH differences of the petroleum reservoir TIs from the well data. 

Training Image Absolute MPH Difference 

1 0.352 

2 0.870 

3 0.257 

4 0.283 

5 0.606 
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Table 5.8: CPU time required to create the templates and calculate MPS for the petroleum 

reservoir case study. 

 Time Required (mm:ss) 

Training Image Template Creation MPS Calculation 

TI #1 1:26 60:19 

TI #3 1:22 63:18 

TI #4 1:24 74:55 

5.3.2 Unconditional Simulation 

Unconditional simulation was used to assess the reproduction of features in the TIs. The 

three cases for MPS-GS were considered and SISIM was used for a comparison to a 

standard geostatistical method. Table 5.9 shows the time required for simulating ten 

realizations of the four cases. All simulations were performed using five grids; the MPS-

GS realizations used a servosystem parameter of µ=1.0 and a connectivity correction 

factor of η=0.1. A maximum of thirty loops was imposed for stopping, but this limit was 

rarely reached. The SISIM realizations use a variogram model that was inferred from the 

data rather than from one of the TIs. All realizations are 68x56x112 for a total of 426,496 

cells; recall that the TIs are 150x150x75 cells, so the cell sizes in the figures are different 

between the TIs and realizations. 

 

Table 5.9: CPU time required to simulate ten unconditional realizations for the petroleum 

reservoir study. 

Training Image Time Required (mm:ss) 

TI #1 8:52 

TI #3 9:55 

TI #4 9:03 

SISIM 2:27 

 

Figures 5.40 through 5.43 show the results of unconditional simulation from each of 

the four cases. The Figures have two parts: (a) nine slices from the realization, three in 

each plane; (b) the indicator variograms of five realizations in the X, Y, and Z directions 
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for each of the four facies. No MPH was used to compare the unconditional realizations 

because there is no standard for comparison. 

 Some notable observations from the realizations: 

• The sinusoidal channel features for facies 4 are apparent in the MPS-GS 

realizations, although the relatively large size of the channel structures compared 

to the simulation domain largely eliminates the repeating nature of the patterns; 

• The channel cross-sections for facies 4 are reproduced in all MPS-GS cases, with 

flat tops and the correct cross-sectional shape and size; 

• Facies 2 and 3 are properly associated with one another in the MPS-GS 

realizations; 

• The TI #1 case reproduces the channel features of facies 3 and the associated 

levees of facies 2; 

• The TI #3 case has the worst reproduction of the facies 2 and 3 structure, caused 

by the separated nature of the individual facies bodies within the channels. In this 

case the two should be combined in to a single channel architecture; 

• The TI #4 case reproduces the facies 2 and 3 lobes well; 

• SISIM does not reproduce any of the geological features seen in the TIs or 

presumed to be represented by the data; 

• All MPS-GS cases have indicator variograms that are too low at short ranges. 

This could be caused by the relatively small size of the domain reducing the 

repeating nature of the pattern; 

• The variograms do not show the perfect cyclicity seen in the TI variograms, but 

rather continue increasing to the sill values. 
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Figure 5.40a: Slices from one unconditional MPS-GS realization created using TI #1 in 

the petroleum reservoir case study. 
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Figure 5.40b: The indicator variograms of TI #1 (red line), sample data (black dots), and 

5 MPS-GS realizations (blue lines) in the (left to right) X, Y, and Z directions for (top to 

bottom) facies 1, facies 2, facies 3, and facies 4. 
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Figure 5.41a: Slices from one unconditional MPS-GS realization created using TI #3 in 

the petroleum reservoir case study. 
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Figure 5.41b: The indicator variograms of TI #3 (red line), sample data (black dots), and 

5 MPS-GS realizations (blue lines) in the (left to right) X, Y, and Z directions for (top to 

bottom) facies 1, facies 2, facies 3, and facies 4. 
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Figure 5.42a: Slices from one unconditional MPS-GS realization created using TI #4 in 

the petroleum reservoir case study. 
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Figure 5.42b: The indicator variograms of TI #4 (red line), sample data (black dots), and 

5 MPS-GS realizations (blue lines) in the (left to right) X, Y, and Z directions for (top to 

bottom) facies 1, facies 2, facies 3, and facies 4. 
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Figure 5.43a: Slices from one unconditional SISIM realization in the petroleum reservoir 

case study. 
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Figure 5.43b: The modeled indicator variograms, sample data (black dots), and 5 SISIM 

realizations (blue lines) in the (left to right) X, Y, and Z directions for (top to bottom) 

facies 1, facies 2, facies 3, and facies 4. 

5.3.3 Conditional Simulation with a Vertical Trend 

The available well data were used for simulation to assess the ability of MPS-GS to 

integrate real information that does not necessarily follow an idealized model of geology. 

The 33 wells were used as hard conditioning information and a vertical trend was 

modeled from the well data and used as locally varying facies proportions. There are 

distinct variations in the proportions at different horizontal layers; Figure 5.44 shows the 

modeled vertical trend. There are five distinct zones: three with higher net sands 

proportions (top, middle and bottom) and two with higher shale proportions (upper and 

lower). The middle high net zone has a greater proportion of facies 4 and is thin while the 
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upper and lower high net zones have relatively high proportions of facies 2 and 3 and are 

thicker than the middle zone. Each of the 112 layers has its own set of facies proportions 

and areal trends were not considered. 

 

  

Figure 5.44: Vertical trend model used in the petroleum reservoir case study. 

 

The parameters and domain size for the simulations were the same as the 

unconditional case. Table 5.10 shows the time required to simulated ten realizations for 

each of the cases. 

 

Table 5.10: CPU time required to simulate ten conditional realizations for the petroleum 

reservoir case study. 

Training Image Time Required (mm:ss) 

TI #1 10:30 

TI #3 10:34 

TI #4 9:48 

SISIM 2:32 
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Figures 5.45 through 5.48 show the results of the conditional simulations. Each 

Figure shows nine slices from one realization. Figure 5.49 shows the reproduction of the 

vertical trend model of each facies in the four cases. 

Some observations from these results: 

• All of the comments from the unconditional cases still apply. Using hard and soft 

data does not significantly change the overall structure produced; 

• Some of the well data appear as discontinuities where there are sudden changes 

from one facies structure to another and in areas of facies proportions 

significantly different than the global TI proportions. This is visible in all cases; 

• The high and low net zones appear to be reproduced on visual inspection; 

• From Figure 5.49 the methods all reproduce the vertical trend model. Facies 2 

and 3, with the lowest proportions, show the greatest variation from the target; 

• MPS-GS appears to slightly overshoot the very high and low target facies 

proportions while SISIM undershoots; 

• Facies 2 and 3 are underrepresented by MPS-GS, particularly in the zones of very 

low proportions. 

Using the 10 wells reserved for jackknife cross-validation, the accuracy of the 

simulation cases was assessed. Figure 5.50 shows an accuracy plot of the four cases: the 

simulated probability of a facies is shown on the horizontal axis and the actual probability 

of finding that facies is shown on the vertical axis. The MPS-GS case using TI #1 and 

SISIM are more accurate than the TI #3 and TI #4 cases for simulated facies probabilities 

above 0.4, and all four cases are comparable below that threshold. Training image #1 is 

the closest to the conceptual model of geology and this is the likely cause of the improved 

accuracy. 

The precision of the cases was measured using the histograms of the simulated facies 

proportions. Figure 5.51 shows the results. The three MPS-GS cases have very similar 

histograms and variances of 0.098 while SISIM has a variance of only 0.048 and a 

noticeably different histogram, in particular a spike at a simulated proportion of 0.2. The 

SISIM results have little local precision and as a result the realizations would all be more 

similar in terms of response characteristics.  
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Figure 5.45: Slices from one conditional MPS-GS realization created using TI #1 in the 

petroleum reservoir case study. 
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Figure 5.46: Slices from one conditional MPS-GS realization created using TI #3 in the 

petroleum reservoir case study. 
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Figure 5.47: Slices from one conditional MPS-GS realization created using TI #4 in the 

petroleum reservoir case study. 
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Figure 5.48: Slices from one conditional SISIM realization in the petroleum reservoir 

case study. 
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Figure 5.49a: Trend model reproduction of the conditional simulations for facies 1 in the 

petroleum reservoir case study. 

 

  

Figure 5.49b: Trend model reproduction of the conditional simulations for facies 2 in the 

petroleum reservoir case study. 
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Figure 5.49c: Trend model reproduction of the conditional simulations for facies 3 in the 

petroleum reservoir case study. 

 

  

Figure 5.49d: Trend model reproduction of the conditional simulations for facies 4 in the 

petroleum reservoir case study. 
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Figure 5.50: Accuracy plot of the petroleum reservoir conditional simulations based on 

the jackknife cross-validation data. 

  

Figure 5.51: Precision of the petroleum reservoir conditional simulations. 
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5.4 Conclusions 

The MPS-GS algorithm was compared to SISIM for three different geologic scenarios. 

Different templates and TIs were used for MPS-GS to examine the effects of changing 

these parameters. The MPS-GS algorithm was found to be as accurate as SISIM. The 

precision of MPS-GS is greater than SISIM in most cases, and no worse in other cases. 

The best results for MPS-GS are generally found using MPEs of about size N=4. 

Higher-order statistics give better results in some cases, but with three or more facies the 

TIs that are available are usually insufficient for adequate statistical inference, and 

solving the large systems of equations takes significantly longer without a corresponding 

gain in quality of realizations. 

Using different TIs for quantification of global uncertainty represents the uncertainty 

in the conceptual model of geology. Multiple realizations represent ergodic fluctuations 

inherent to stochastic simulation. Comparing a variety of scenarios also allows for the 

identification of statistically good and poor choices for a TI. 
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6 Conclusions 

The subject of multiple-point statistics (MPS) within the field of geostatistics has seen 

significant development since the early 1990s. Traditional variogram-based geostatistics 

cannot produce realizations that are consistent with curvilinear or highly structured 

conceptual models of geology. Object- or process-based methods have difficulty 

integrating all available hard and soft data. Algorithms using MPS have been developed 

to reproduce both a training image (TI) and all available data. Other areas of MPS such as 

TI creation and selection and evaluation of results have seen less research. The overall 

field of multiple-point geostatistics continues to evolve. 

This research develops a new Gibbs sampler framework for generating categorical 

variable models using MPS, lower-order statistics, hard sample data, and secondary 

information. The approach is flexible enough to use dense sample data. Multiple-point 

events (MPEs) are used to mitigate the problem of dimensionality while using higher-

order spatial statistics. M multiple-point events of order K
N
 are used rather than a single 

large template of order K
MN

. The approach taken in the MPS-GS algorithm has the 

advantage of only requiring the inverse of a single matrix to solve for all possible 

conditional distributions. 

The Gibbs sampler has advantages and drawbacks common to iterative methods. A 

number of features were implemented to maximize the advantages and work around the 

disadvantages: the use of multiple grids for long-range structure reproduction; a 

servosystem for matching target global and local univariate distributions; image cleaning 

through either a noise reduction factor or a correction to match the connectivity of the TI; 

and several stopping criteria to recognize the different conditions that indicate 

convergence. 
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6.1 Areas of Application 

MPS-GS is a newly-developed approach for the simulation of categorical variables. In 

some cases it is better to use a traditional variogram-based method or object-based 

modeling. In other cases categorical modeling is not necessary at all. For modeling of 

categorical variables such as facies, the categories should largely control the 

petrophysical or mineralogical characteristics of interest in the geology. There should also 

be a clear spatial structure in the categories, as interpreted by an expert. The structure 

may be simple, but for the application of MPS-GS typically complex nonlinear structure 

is considered. For practical purposes the number of categories should be limited to no 

more than five. 

Using the MPS-GS algorithm for categorical simulation requires that a TI be 

available. A TI may come from outcrop mapping, interpretation, or unconditional object-

based or process-based simulation. There must be enough geological and statistical 

information available to justify the TI(s) used. The TI is a subjective decision and is a 

matter of expert interpretation. If categorical simulation is needed and an appropriate TI 

is available, then MPS-GS may be applied. 

Depending on the use of the model and the categorization of the variables into facies 

or other divisions, the cell size for MPS-GS can vary greatly. Pore space modeling at a 

micrometer scale is an application that has been explored by others using different 

simulation methods, including SNESIM. Micromodeling is used to determine a porosity-

permeability relationship. 

Mineralogical modeling within rock types at a millimeter scale is another application 

where MPS-GS can provide categorical models. The relations between different minerals 

are often too complex for traditional geostatistical methods and are important when 

considering ore recovery or contamination. 

Rock type modeling within facies groups at a centimeter to decimeter scale is 

considered when considering the relationship between a modeled cell size and the 

permeability distribution of the categories. Highly shaley rock types can control the 

effective permeability of a facies, even in small proportions. 

Facies modeling is the most common application for MPS and the MPS-GS 

algorithm. Facies modeling may be done at a variety of scales for different purposes, such 

as high-resolution flow simulation with a vertical resolution of decimeters; low-resolution 
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flow simulation at a vertical scale of meters; and reservoir or mine planning at a scale of 

tens of meters. 

Large scale applications are feasible using MPS-GS. Modeling an entire lease using a 

cell size of tens to hundreds of meters can be used during exploration to quantify the wide 

range of uncertainty in a number of potential mineral projects. Regional modeling with a 

cell size of hundreds of meters is another application, modeling stratigraphy or geological 

units as the categories. 

6.2 Future Areas of Research 

The approach developed here is not the only methodology for using MPS. Moreover, the 

approach has not been explored exhaustively. There are a variety of areas for future 

research. 

Extending the MPS from conditioning information to the quantities being estimated 

was derived as pattern simulation in Section 3.5. This concept allows for the patching of 

entire MPEs into a simulated domain instead of single locations at a time and could 

improve the reproduction of high-order structure inferred from the TI. 

Accounting for nonstationarity in MPS-GS is accomplished by forcing local 

proportions to be reproduced. The MPS used to estimate the conditional probabilities still 

contain the global univariate proportions in the TI. Scaling the MPS to different 

univariate proportions could be applied rather than the servosystem method to account for 

the changes to high-order structure caused by nonstationarity. Alternatively, different TIs 

could be used to account for nonstationarity in the geological structure and not just the 

univariate proportions. 

The Gibbs sampler framework developed for MPS-GS could be applied to 

continuous variables such as porosity or grade instead of facies proportions. This would 

require research into how to determine the conditional distributions but the iterative 

scheme and convergence properties still apply. 

As with all simulation methods, there remains room for improvement in the 

computational efficiency and programming of the code. A move to a more sophisticated 

programming language such as C++ and the effort of a more experienced programmer 

could significantly improve the CPU and memory requirements. 
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A number of the implementation aspects developed in this work could be utilized in 

other Markov chain Monte Carlo methods. The use of MPEs for determining conditional 

facies probabilities could be applied in a Metropolis-Hastings framework or a simulated 

annealing algorithm, or some combination. Future work on MPS-GS includes the 

addition of an accept/reject step found in Metropolis-Hastings or simulated annealing. 
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A Symbols and Selected Terms 

This Appendix contains definitions for words, symbols, and variables used throughout 

this dissertation that may not be straightforward to the reader. 

 

kB  Bin of a local facies proportion at a location u 

( ) ( ){ }; , ;Cov I k I k +u u h  Covariance of an indicator variable I between two 

locations separated by lag vector h 

( ) ( ){ },Cov Z Z +u u h  Covariance of a variable Z between two locations 

separated by lag vector h 

{ },
i j

Cov E Eα β
 Covariance between multiple-point events Ei

α
 and Ej

β 

{ },
i

Cov E kα
 Covariance between multiple-point event Ei

α
 and facies k 

{ },
u v

Cov I Iκ ψ
 Covariance between facies κ and ψ at template points u and v 

kC  Connectivity of facies k as defined in Section 4.1.4 

,

k

u κχ  Linear estimation weight assigned to facies κ at template point u for 

the conditional distribution of facies k 

d  Discretization of multiple grids; the proportion between the number of 

cells in one dimension of one grid and the next coarser grid 

D  Set of conditioning data 

Dimensionality: The property of having dimensions. In the field of multiple-point 

statistics, dimensionality is often used to describe the problem of 

having too many dimensions for practical purposes. 
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iE
α

 Multiple-point event with offsets i and an arrangement of facies 

corresponding to multiple-point histogram class α 

0E
γ

 Multiple-point event in the center of a template and an arrangement of 

facies corresponding to multiple-point histogram class γ 

tε  Movement component of a random walk at time t 

ε  Small value added to the denominator in local proportion binning to 

prevent undefined values 

( );k Nφ  Connectivity function for facies k and N points 

[ ]αϕ  Initial state of a Markov chain 

g  Integer value of current grid 

G  Number of multiple grids 

Gibbs sampler (GS): A Markov chain Monte Carlo method that uses conditional 

distributions to explore a state space. 

( );kγ h  Variogram value at lag h for indicator function of variable k 

h  Lag vector 

Hu  Spatial entropy between the null vector and location u 

iH  Multiple-point spatial entropy of event i 

η  Connectivity correction control parameter 

( );I k u  Indicator function of facies k at location u 

( )*
;I k u  Estimated value of indicator function of facies k at location u 

( );I k u + h  Indicator function of facies k at location u+h 

( )i
I E

α
 Indicator of multiple-point event Ei

α
 

[ ]I  Row vector of indicators of multiple-point events 
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Initial image (initial state): The starting value of a Markov chain variable before 

simulation commences. In MPS-GS, the starting facies values in the 

simulated domain. 

k  A particular facies value 

K  The number of possible facies values 

;k u  The facies value at location u 

( )k n  The facies value at template point n 

iλ  Linear estimation weight assigned to data location i 

,

k

i αλ  Linear estimation weight assigned to class α of multiple-point event i 

for the conditional distribution of facies k 

LHS

 
 
 
  

 The left-hand-side covariance matrix in a system of linear equations 

λ

 
 
 
  

 Column vector of optimal linear estimation weights  

zm   Mean value of variable z 

M  Number of multiple-point events used in MPS-GS 

µ  Servosystem control parameter 

Markov chain: A sequence of states for a variable where the value of the next state 

depends only on the current value and earlier states are irrelevant. 

Markov chain Monte Carlo (MCMC): A family of statistical methods that use Markov 

chains in a stochastic fashion. 

Multiple-point event (MPE): A defined set of N spatial offsets from the null vector that is 

used as a template. 

Multiple-point histogram (MPH): A set of frequencies for all possible combinations of 

categories within a specified template. 

Multiple-point histogram class: A specific pattern or arrangement of categories within a 

template. 
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Multiple-point statistics (MPS): Statistical moments of order greater than two; also used 

to describe geostatistical methods that use high-order moments. 

n  Number of data used in kriging 

N  Number of points per multiple-point event in MPS-GS 

xyzN  Number of cells in a three-dimensional domain 

tiN  Number of cells in a training image 

BN  Number of bins for discretizing local facies proportions 

NRF  Noise reduction factor 

iNch  Number of facies value changes on loop i in MPS-GS 

O  Objective function in simulated annealing 

( )P k  Global proportion of facies k 

kP  Alternate notation for global proportion of facies k 

( )*
P k  Estimated proportion of facies k at the current location in the 

simulation path, u 

( )P k
+

 Base estimate for facies k as defined in Section 4.1.2 

( )P k′  Updated estimate of facies k at the current location accounting for the 

servosystem 

( )P k′′  Updated estimate of facies k at the current location accounting for 

noise reduction or the connectivity correction 

( )TI
P k  Global proportion of facies k in a training image 

( )SIM
P k  Current simulated global proportion of facies k 

( );
SIM

kP k B  Current simulated proportion of facies k within local proportion bin Bk 

( )LOC
P k  Local proportion of facies k at the current location in the simulation 

path, u 
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( )TARG
P k  Target global proportion of facies k 

( )MIN
P k  Minimum nonzero local proportion of facies k 

( )MAX
P k   Maximum local proportion of facies k less than one 

'kkP  Probability of facies k at the null vector and facies k’ at a specified 

offset 

( )i
P E

α
 Global probability of multiple-point event Ei

α
 

( )0P E
γ

  Global probability of multiple-point event E0
γ
 

Pαβ  Transition probability of a Markov chain moving from state α to state 

β in a single step 

t
Pαβ   Transition probability of a Markov chain moving from state α to state 

β in exactly t steps 

Pαβ

 
 
 
  

 Transition matrix of a finite Markov chain 

[ ]kP  Row vector of the global facies proportions 

[ ]P  Row vector of global probabilities of multiple-point events 

*
P    Row vector of estimated conditional facies probabilities 

[ ]απ  Stationary distribution of a Markov chain 

RHS

 
 
 
  

 Right-hand-side covariance matrix in a system of linear equations 

2

Eσ  Error variance of a linear estimate  

2

kσ  Global variance of the indicator variable of facies k 
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2

yσ  Global variance of Gaussian variable y 

2

zσ  Global variance of variable z 

Servosystem: A correction applied to conditional distributions in a simulation algorithm 

to improve the ultimate match to a global distribution. 

Single-point indicator: An indicator variable at a specified location within a template. 

State: A value that a variable can take. 

State space: The set of all possible values that can be taken by a variable. 

T  Temperature control parameter in simulated annealing 

τ  Control parameter for conditional independence / tau model 

Template: A specified arrangement of points in space that is used to calculate and store 

multiple-point statistics. 

Training image (TI): A conceptual model of geology used to infer multiple-point 

statistics. 

V

 
 
 
  

 Matrix of orthonormal eigenvectors 

tX  Value of a Markov chain at time t 

( )Y u  Gaussian variable Y at location u 

( )*Y u  Estimated value of Gaussian variable Y at location u 

( )Z u   Variable Z at location u 

( )*
Z u   Estimated value of variable Z at location u 

ω

 
 
 
  

 Matrix with eigenvalues on the diagonal and zeros elsewhere 
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1
ω

 
 
 
 
 

  Matrix with inverse eigenvalues on the diagonal and zeros elsewhere 
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B MPS-GS Software 

To develop and test the MPS-GS algorithm, a GSLIB-style (Deutsch and Journel, 1998) 

program was developed in FORTRAN. The program is called MPESIM. This chapter 

describes the structure of the program and the files necessary for its use. Section B.1 

reviews the GSLIB standard conventions for data files and geometry. Section B.2 

presents the workflow of MPESIM. Section B.3 explains the user-specified parameters 

used by MPESIM. Section B.4 explains the format of files used by MPESIM for storing 

the template and statistics. Section B.5 lists the FORTRAN files necessary to compile the 

MPESIM program. Section B.6 presents a brief example to help users confirm successful 

compilation of the program. 

The MPESIM program was written as research code. Some effort has been made for 

user friendliness, stability, and flexibility; however, there no support and bugs may be 

present in the code. 

B.1 GSLIB Conventions 

The GSLIB suite of software is documented extensively in Deutsch and Journel, 1998. It 

is a library of geostatistical software that can be used for a variety of tasks such as data 

analysis, plotting, estimation, and simulation. 

An example of a data file in GSLIB format is shown in Table B.1. The Line labeled 1 

is the header and is used as a description or title. Line 2 contains an integer value that is 

the number of columns in the file, three in the example; each column contains one 

variable. Line 3 identifies the first variable name or column description. Each 

column/variable has one line in this section. From label 4 and below contains the data, 

with the specified number of columns. Each column must be present on every row; 

negative number placeholders such as -99 or -1 are used for missing values. 
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Table B.1: An example GSLIB data file. 

1 

2 

3 

 

 

4 

Header of File 

3 

Variable 1 

Variable 2 

Variable 3 

1.001  2.359  15 

0.995  1.837  15 

0.982  2.105  13 

... 

 

Data files such as the example in Table B.1 can contain scattered data that have 

coordinates as variables. The coordinates are Euclidean X,Y,Z, although for two-

dimensional cases one of the coordinates may be omitted and the physical meaning of the 

coordinates can be specified by the user (such as northing, easting, elevation). 

An exhaustive block model is specified with no coordinates necessary in the file; 

rather, there are Nxyz lines. The origin of the block model is in the lower-left corner 

(minimum X, Y, and Z values) and cycles in the X, then Y, then Z directions. Note that in 

GSLIB convention the Z coordinates increase upwards. The cells are numbered from 

(1,1,1) to (nx,ny,nz). Figure B.1 shows an example of the grid indexing in GSLIB. 

 

  

Figure B.1: An example of GSLIB grid indexing. The origin cell is marked with a dot. 

 

To use both scattered data and a block model, the geometry of the cells must be 

specified. The grid definitions in GSLIB are based on nx, xmin, and xsiz (with y or z 

replacing x in the other directions). The nx variable is the number of cells in the X 

● 
 

 

1    nx 

nz 

 

 

 

 

 

1 

1 

ny 
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direction; xmin is the X coordinate of the center of the origin cell; and xsiz is the size of 

the cells in the X direction. The edge of the block model is xmin-(xsiz/2) and the size of 

the model is xsiz*nx. An example of the cell geometry for a two-dimensional model is 

shown in Figure B.2. 

 

  

Figure B.2: An example of GSLIB cell geometry definitions. 

B.2 Workflow 

The MPESIM program follows the workflow of the MPS-GS algorithm described in 

Chapter 3, with the features mentioned in Chapter 4. MPESIM will use the user-specified 

TI and automatically create a template and calculate the optimal linear weights in 

Equation 4.1. Figure B.3 shows a flowchart of the initial state of MPESIM, where the 

parameter, template, and MPS files are either read as input (if they exist) or created. The 

workflow in Figure B.3 is used as the setup before simulation. The program will stop 

after each step to allow the user to review the results. 

 

xsiz 

xmin 

ymin 

ysiz 
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Figure B.3: MPESIM workflow for creating a template and calculating MPS. 

 

Once the statistics have been calculated and written to a file, the preparation stage of 

MPESIM proceeds. This part of the workflow is shown in a flowchart in Figure B.4. At 

this stage the program reads in any hard data and local proportions and discretizes the 

local proportions if necessary. The output files is opened and the header written. 
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Figure B.4: MPESIM workflow for preparing for simulaton. 

 

Figure B.5 shows a flowchart for the simulation portion of MPESIM. The program 

follows the Gibbs sampler algorithm outlined in Chapter 3 and uses stopping criteria as 

specified in Chapter 4. 
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Figure B.5: MPESIM workflow for performing simulation. 

B.3 Parameter File 

Several text files are used by the MPSEIM2 program. The first is a GSLIB-style 
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parameter file is created. Table B.2 shows a default parameter file. Line 1 is the name of 

the file containing the MPS; if this file exists it will be read in, if not it will be created 

(see Figure B.3). Lines 2 through 4 define the MPS to use in simulation; the number of 

grids to use (G), the number of MPEs for the template (M), and the points per event (N). 

The M and N values must agree with the MPS file, and G must be no greater than that 

contained in the file (the simulation cannot use more grids than the MPS have been 

calculated for). Line 5 defines the minimum frequency of a MPE class to consider. A 

higher value on Line 5 will reduce the size of the system to solve but will also ignore 

more MPEs. 

Lines 6 to 8 define the TI file. Line 6 is the filename; Line 7 is the column containing 

the facies information; and Line 8 is the size of the TI field (X, Y, and Z). No TI file is 

needed if the MPS file (Line 1) already exists. 

Lines 9 through 11 define the template to calculate the MPS within, if necessary. 

Line 9 is the name of the file containing the template offsets; if this file exists it will be 

read, otherwise it will be created. Line 10 is the columns containing the X, Y, and Z 

offsets for each point in the template. Line 11 is the maximum offsets in the X, Y, and Z 

directions if a template is to be created. These lines are irrelevant if the MPS file already 

exists, but must be present in the parameter file. If the simulation is 2D, the Z offset 

column may be set to 0. 

Lines 12 through 14 define the indicators for the facies. Line 12 specifies the number 

of facies, K; Line 13 provides the integer codes defining the facies and must have K 

values; and Line 14 defines the global target proportions of the facies and must also have 

K values. 

Lines 15 and 16 specify the hard conditioning data file. Line 15 is the file name, and 

Line 16 identifies the columns for the X, Y, Z, and facies information. If the data set is 

2D the Z column may be set to 0. If the conditioning data file is not found then the 

realizations will be unconditional. 

Lines 17 through 23 define the output. Line 17 is the name of the file to write the 

results to; this file will be in standard GSLIB format with one column. Line 18 is the 

number of realizations to generate. Lines 19 to 21 are the grid definitions in the standard 

GSLIB format. Line 22 specifies the stopping criteria for the realizations, with a stopping 

number (typically left as 1 except for research); a minimum proportion of cell values to 

change in each loop (if less than, say, 0.1% of all values change the image is assumed to 
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have converged); and the maximum number of loops to allow before stopping. Line 23 is 

the debugging output file; this file will provide a record of the output to the screen during 

simulation and will contain the parameters used, the number of changes in each loop, and 

the univariate proportions in each loop. 

Lines 24 to 26 define the local proportion information. Line 24 is the file name (if the 

file does not exist no local proportions will be used); Line 25 provides the K columns for 

the local data; and Line 26 specifies the discretization of the local proportions, or number 

of bins Bk. If local proportion data exists then the global proportions are not used. 

Line 27 specifies the servosystem and connectivity correction control parameters. 

Line 28 is the random number seed value. 

 

Table B.2: An example parameter file for MPESIM. 
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10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

                  Parameters for MPESIM 

                  ********************** 

 

START OF PARAMETERS: 

mpstats.mps                   -File for MPS 

4                                -Number of grids to use 

8                                -Number of MP events to consider 

4                                -Number of points per event 

1.0e-6                           -Minimum MP frequency to consider 

tifile.dat                    -File for Training Image 

1                                -Column for TI data 

256  256  128                    -Size of TI field 

template.temp                 -File containing point offsets 

1  2  3                          -Columns for X,Y,Z offsets 

5  5  3                          -Maximum point offsets 

5                             -Number of codes/facies 

0  1  2  4  5                    -Indicators for codes/facies 

0.4  0.2  0.2  0.1  0.1          -Global pdf values 

data.dat                      -File for conditioning data 

1  2  3  4                       -X,Y,Z,Data columns 

MPESIM.out                    -File for output 

1                                -Number of realizations 

256  0.5  1.0                    -nx,xmin,xsiz 

256  0.5  1.0                    -ny,ymin,ysiz 

128  0.5  1.0                    -nz,zmin,zsiz 

1  0.05  30                      -Stopping number,threshold,max loops 

MPESIM.dbg                       -File for debugging 

pdf.dat                       -File for local proportions 

1  2  3  4  5                    -Columns for all indicators 

4                                -Discretization of local pdf 

1.0  0.1                      -Servosystem, connectivity factors 

6744889                       -Random number seed value 

 



 218 

B.4 Template and MPS Files 

Using the TI and the defined parameters, the MPESIM program will calculate the optimal 

MPS template and weights used in MPS-GS, as shown in Figure B.3. These two 

calculations are stored in files for checking by the user and for later use without 

recalculation. 

Table B.3 shows an example of a template file. Line 1 defines the parameters for the 

template: G, M, and N. Line 1 is also the GSLIB-style header line for the file. Line 2 is 

the number of columns in the file; if the template is created by MPESIM this is always 3. 

The Lines numbered 3 in Figure 5 are the header lines and there is one for each column in 

the file; in this case, one each for the X, Y, and Z offsets. The Lines numbered as 4 define 

the offsets in the template from the central location of (0,0,0). There are GMN lines in the 

file, with N cycling the fastest, then M, then G, so the first N lines define the first MPE in 

the first grid and the (MN+1) to (MN+N) lines define the first MPE in the second grid. In 

the example template file two grids were used with four, four-point MPEs in each grid for 

a template size of 16 points and 32 lines in the file. 

Table B.4 shows an example of an MPS file. The dots “…” represent lines that have 

been removed to shorten the file to a single page for this example. Line 1 is the header 

line; note the MPS file is no longer GSLIB-standard, but is unique to the MPESIM 

program. Line 2 contains the parameters for the MPS in the file, with four numbers: G, 

M, N, and K (these letters are shown in order on Line 1). These parameters must agree 

with the parameter file used, though grids may be dropped from MPS calculation to 

simulation. 

The Lines labeled as 3 are the headers for each grid and there are G of these lines. 

After the grid header there is a Line 4 (again one for each grid) that defines the global 

proportions for this grid, Pk, k=1,…,K. Note that these numbers vary slightly from grid to 

grid due to the range of the search for each grid; these very small fluctuations can have a 

significant impact on the multiple-point covariance matrix. After each Line 4 there is a 

group of Lines, labeled 5 here, for each grid. There are seven lines and they define the 

connectivity values P(Ck) k=1,…,K; each line defines one connectivity value from Ck=0 

to Ck=6. These are the connectivity values as used in Equation 11. 

After the grid header lines there is the header for the first MPE on that grid. Line 6 is 

the header for each MPE and there are M of these lines for each grid. After Line 6 is the 
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group of Lines 7 that specify the point offsets for the MPE. There are N of these lines for 

each event. The set of Lines 8 are the statistics calculated for the indicators in the MPE. 

Each line specifies the class α, the global proportion of that class, P(Ei
a
), and weight 

assigned to the indicator of that class for each facies, λ
k
i,a, k=1,…,K. There are a 

maximum of K
N
 of these lines; one for every possible class. Classes that are below the 

cutoff proportion are not included. Lines 6 through 8 are repeated M times for each grid. 

The weights assigned to the univariate indicators are at the end of each grid. There are 

MNK lines in this part of the MPS file. 

After the univariate indicators portion of the file, Lines 3 through 10 repeat again for 

each of the remaining grids. Line 11 defines the end of the MPS file. 

 

Table B.3: An example template file for MPESIM. 
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2 

3 

 

 

4 

Template of points G M N            2           4           4 

 3 

 X offset 

 Y offset 

 Z offset 

   1    0    0 

  -1    0    0 

   2    0    0 

  -2    0    0 

   0    1    0 

   0   -1    0 

   1   -1    0 

  -1    1    0 

   1    1    0 

  -1   -1    0 

   2    1    0 

  -2   -1    0 

   2   -1    0 

  -2    1    0 

   1   -2    0 

  -1    2    0 

   2    0    0 

  -2    0    0 

   4    0    0 

  -4    0    0 

   0    2    0 

   0   -2    0 

   2   -2    0 

  -2    2    0 

   2    2    0 

  -2   -2    0 

   4    2    0 

  -4   -2    0 

   4   -2    0 

  -4    2    0 

   0    4    0 

   0   -4    0 
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Table B.4: An example MPS file for MPESIM. 
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11 

MPS file for MPESIM v2  G  M  N  K 

  2  4  4  2 

 GRID            1 

    0.696324    0.303676 

    0.000187    0.000000 

    0.002355    0.001886 

    0.040112    0.087176 

    0.127551    0.313561 

    0.829794    0.597377 

    0.000000    0.000000 

    0.000000    0.000000 

 EVENT            1 

     1     0     0 

    -1     0     0 

     2     0     0 

    -2     0     0 

     1    0.642467   -0.334973    0.334973 

     5    0.012859   -0.258374    0.258374 

     6    0.025718   -0.073913    0.073913 

... 

EVENT            2 

     0     1     0 

     0    -1     0 

     1    -1     0 

    -1     1     0 

     1    0.565051   -0.250738    0.250738 

     2    0.006898   -0.231665    0.231665 

... 

... 

UNIVARIATE INDICATORS 

     1     0     0  0    0.328335   -0.328335 

     1     0     0  1   -0.328335    0.328335 

    -1     0     0  0    0.340872   -0.340872 

    -1     0     0  1   -0.340872    0.340872 

... 

GRID            2 

    0.691189    0.308811 

    0.000628    0.000000 

    0.008791    0.004129 

    0.081122    0.163299 

... 

EVENT            1 

     2     0     0 

    -2     0     0 

     4     0     0 

    -4     0     0 

     1    0.589871    0.062044   -0.062044 

     2    0.001790   -0.055254    0.055254 

     3    0.001872   -0.074566    0.074566 

... 

... 

UNIVARIATE INDICATORS 

     2     0     0  0    0.205283   -0.205283 

     2     0     0  1   -0.205283    0.205283 

    -2     0     0  0    0.189959   -0.189959 

    -2     0     0  1   -0.189959    0.189959 

... 

END 
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B.5 FORTRAN Files 

There are 81 files of FORTRAN code needed to compile the MPESIM program. The 

majority of these are from the LAPACK suite of subroutines (Anderson et al, 1999). A 

full list of these files is shown in Table B.5. There is the main file, MPESIM.f; a group of 

GSLIB and similarly-styled files; and a variety of LAPACK and BLAS (Basic Linear 

Algebra Subprograms) subroutines. 

 

Table B.5: A list of the FORTRAN files required for MPESIM. 

Main File 
MPESIM.f 

GSLIB and Similar Files 

chknam.for   getclass.for  makeevents.for  readstats.for 

convmat.for  getcodes.for  makepar.for     readtemp.for writeevents.for 

convtemp.for getconn.for   mpstatcalc.for  readti.for     writetemp.for 

dsortem.for  getindx.for   pickem.for    sortem.for 

LAPACK Subroutine Files 

dlacpy.f  dlaed4.f  dlaeda.f  dlarf.f   dlaset.f  dorm2r.f  dsterf.f 

dlae2.f   dlaed5.f  dlaev2.f  dlarfb.f  dlasr.f   dormql.f  dsyevd.f 

dlaed0.f  dlaed6.f  dlamrg.f  dlarfg.f  dlasrt.f  dormqr.f  dsytd2.f 

dlaed1.f  dlaed7.f  dlanst.f  dlarft.f  dlassq.f  dormtr.f  dsytrd.f 

dlaed2.f  dlaed8.f  dlansy.f  dlartg.f  dlatrd.f  dstedc.f 

dlaed3.f  dlaed9.f  dlapy2.f  dlascl.f  dorm2l.f  dsteqr.f 

LAPACK Auxiliary Files 

dlamch.f  ieeeck.f  ilaenv.f  iparmq.f  lsame.f  xerbla.f 

BLAS1 Files 

daxpy.f   ddot.f    drot.f    dswap.f   idamax.f 

dcopy.f   dnrm2.f   dscal.f 

BLAS2 Files 

dgemv.f   dger.f    dsymv.f   dsyr2.f   dtrmv.f 

BLAS3 Files 

dgemm.f   dsyr2k.f  dtrmm.f 

 

B.6 Example 

To confirm the successful compilation and execution of the MPESIM program, consider 

the eolian sandstone case study from Section 5.2. The true data, sample data, and training 

image are stored in ASCII files names TRUE.DAT, DATA.DAT, and TI.DAT, 

respectively. The data are in GSLIB standard format for gridded data (true.dat and ti.dat) 

or scattered data (data.dat). Figure B.6 shows the true, sample, and TI data sets for 

reference. 
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Figure B.6: The data in TRUE.DAT (top left), DATA.DAT (top right), and TI.DAT 

(bottom). 

 

Compiling the MPESIM program with the files from Table B.5 produces the 

MPESIM.EXE executable file. Running the executable with no parameter file will create 

the default parameter file shown in Table B.2. If the parameter file is modified to use the 

parameters shown in Table B.6, then when MPESIM.EXE is run again it will produce the 

files 16x4.temp and MPS-GS.DBG. Running the executable again will create the file 

16x4.mps and overwrite MPS-GS.DBG. Note that the TI.DAT file must be in the same 

folder as MPESIM.EXE.  

At this point the simulation case is ready to be run. Running the executable file one 

more time will create MPS-GS.OUT, containing twenty conditional realizations of the 

eolian sandstone case study. The DATA.DAT file must be in the same folder as 

MPESIM.EXE for the realizations to be conditional; if it is not found the program will 
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automatically generate unconditional realizations instead. Different realizations may be 

created by modifying the random number seed value. Using the default random number 

seed, the first two conditional realizations are shown in Figure B.7. These are the same as 

the two conditional realizations from Section 5.2. 

 

Table B.6: The MPESIM parameter file used in the example. 

                  Parameters for MPESIM 

                  ********************** 

 

START OF PARAMETERS: 

16x4.mps                      -File for MPS 

5                                -Number of grids to use 

16                               -Number of MP events to consider 

4                                -Number of points per event 

1.0e-5                           -Minimum MP frequency to consider 

ti.dat                        -File for Training Image 

1                                -Column for TI data 

300  200  1                      -Size of TI field 

16x4.temp                     -File containing point offsets 

1  2  0                          -Columns for X,Y,Z offsets 

5  3  0                          -Maximum point offsets 

3                             -Number of codes/facies 

1  2  3                          -Indicators for codes/facies 

0.25  0.51  0.24                 -Global pdf values 

data.dat                      -File for conditioning data 

1  2  0  3                       -X,Y,Z,Data columns 

mps-gs.out                    -File for output 

20                               -Number of realizations 

164  0.5  1.0                    -nx,xmin,xsiz 

85   0.5  1.0                    -ny,ymin,ysiz 

1    0.5  1.0                    -nz,zmin,zsiz 

1  0.02  30                      -Stopping number,threshold,max loops 

mps-gs.dbg                       -File for debugging 

pdf.dat                       -File for local proportions 

1  2  3  4  5                    -Columns for all indicators 

4                                -Discretization of local pdf 

1.0  0.1                      -Servosystem, connectivity factors 

6744889                       -Random number seed value 

 

 

   

Figure B.7: The first two realizations produced by MPESIM using the data in Figure B.6 

and the parameters in Table B.6. 

 


