
 

 

 

 

Prediction of Local Uncertainty for Resource Evaluation 

 

by 

 

Eric Butler Daniels 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

 

Mining Engineering 

 

 

 

 

 

Department of Civil and Environmental Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Eric Butler Daniels, 2015 



Abstract

Resource evaluation of a mineral deposit is an important and challenging task.

Traditional estimation methods provide a best estimate at the block scale

based on available data. The pitfalls of histogram smoothing and conditional

bias associated with these methods are well known. Quantifying local uncer-

tainty is an alternative to estimation that avoids these issues. Multiple meth-

ods have been established for quantifying local uncertainty and are presented

here.

This thesis explores the local dependence of change of support methods

as well as improves upon available post processing techniques associated with

quantifying uncertainty for resource evaluation. Change of support parameters

are examined through a simulation test. The advertised benefits and issues

surrounding localization of uncertainty are evaluated and a flexible method-

ology for localization is demonstrated. Artifact reduction techniques are pro-

vided for improved localization when a single model is required. Lastly, a case

study demonstrates practical implementation of geostatistical methods and

post-processing for modeling block scale uncertainty and resource evaluation.
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Chapter 1

Introduction

1.1 Long Term Resource and Reserves Planning

Accurately assessing the value of a mineral deposit is an important and chal-

lenging task. The value of a mineral deposit is reported by two measures,

the resource and the reserve. A resource is the quantified tons and grade of

the mineral of interest. The reserve is defined as the amount of the calcu-

lated resource that can be economically extracted within a mine plan (Rossi

and Deutsch, 2014). Each of these quantities is determined by creating a long

range, life of mine, geostatistical model at an appropriate selective mining unit

(SMU) scale. Many methodologies have been developed and studied for this

purpose with the goal of achieving an accurate, precise and unbiased estimate,

often complimented by a measure of uncertainty. The development and imple-

mentation of careful sampling and quality assurance procedures are required

to collect reliable data to support the estimates. A reliable geologic interpre-

tation and definition of estimation domains are also required. The focus of

this thesis is neither on sampling nor geologic domaining; these tasks must be

completed with an acceptable confidence. This thesis will focus on the effec-

tive development and utilization of block models of grades with uncertainty to

support long term planning and decision making.

1.2 Data and Selective Mining Units

In a mining context, available data for resource and reserve modeling com-

monly includes a series of empirical measurements and geologic interpreta-
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tions. In most cases empirical measurements consist of assay values from drill

holes. An initial distribution of assay data is comprised of data collected at

a small scale relative to the size of the deposit and most often the amount of

data is relatively sparse. Based on the data within each geological domain, a

geostatistical model must be constructed to quantify the value of the subsur-

face mineral of interest. To ensure the block model is suitable for technical

and economic evaluation, geostatistical modeling is performed at a deemed

relevant selective mining unit (SMU) scale. Modeling at this scale avoids the

need to predict the small scale variability within each block.

It is important to note that, between the time of the long range resource

model and the time of mining, more data and information will become avail-

able. Additional information often comes in the form of more drillholes, blast

holes, and geological observations that are combined for a final evaluation of

the material to determine its economic value. At the time of mining, based

on a determined cutoff grade, mined material is often categorized as either ore

or waste. As additional data is collected, the distribution of values for that

measurement becomes better understood and the estimates are not simply an

average over a large volume. As the estimates become more variable, they

provide more complete spatial information. This is referred to as the informa-

tion effect (Rossi and Deutsch, 2014), and should be accounted for in the long

range resource model.

Closely related to the information effect is the support effect. The support

effect as described by Chilés and Delfiner (2012) is similar to the information

effect in the sense that it describes a change in variance. The support effect

relates to a change in a distribution as the scale of interest increases from a

small scale to a larger scale. The predictive model is desired at the SMU scale.

A large number of smaller scale samples will be averaged in a larger SMU

volume; therefore extreme high and low values seen in small scale data will

not be seen in SMU grades. This change in scale and dampening of high and

low values results in a reduction in the variance of SMUs relative to the data.

This must be considered in the modeling process to accurately portray the

SMU distribution. A number of analytical methods and a purely numerical

2



approach are available to predict the change in a distribution from the data

scale to the SMU scale. These methods rely on a variety of assumptions

(Isaaks and Srivastava, 1989) (Journel and Huijbregts, 1978) (Matheron, 1985).

Regardless of the methodology chosen, acknowledging and accounting for both

the information effect and reduced variability at a larger scale are required

aspects of a complete geostatistical modeling process.

1.3 Purpose of Quantifying and Transferring Uncertainty

One important goal of generating a geostatistical model is to accurately predict

the total tons and grade of the in-situ mineral of interest, at the SMU scale,

conditioned to the experimental data available. In most cases the available

data constitutes a very small fraction of the volume being estimated, therefore

making it impossible to provide an exact estimate of the resources and reserves.

However, a carefully constructed model can generate a measure of uncertainty

at each location, that is, a distribution of equiprobable values. This provides

valuable decision support information, allowing the user to calculate not only

a single estimated resource and reserve but a range of possibilities that may

present themselves at the time of mining. A mine plan can be developed

that is robust with respect to this uncertainty or steps can be taken to collect

additional data and reduce uncertainty.

The alternative to quantifying uncertainty is to create a single deterministic

model, with a single value at each location. There is undoubtedly uncertainty

in predictions with incomplete data. A single deterministic block model of

estimates does not permit understanding possible shortfalls or excess capacity

that could result from inaccurate estimates. Quantified local uncertainty will

allow for a risk analysis for evaluation of scenarios for financial and logistical

planning with confidence.

Producing an accurate, precise, and unbiased geostatistical model of un-

certainty that is properly conditioned to the input experimental data is not

an easy task, and must be uniquely catered to each deposit as no two geo-

logic systems are exactly identical. For this reason a variety of geostatistical

3



methods have been developed. Modeling techniques can be considered in two

categories; a group of estimation techniques that provide a single determin-

istic model and a second group of more robust methodologies that generate

quantified uncertainty for each location.

1.4 Methods for Resource and Reserve Calculations

Conventional resource and reserve calculations are performed on a single model

at the SMU scale. This has long been the status quo in the mining industry.

This requires utilizing an estimation geostatistical method or a similar tech-

nique like inverse distance estimation resulting in a single value for each block

that can be evaluated as ore or waste for a straight forward and computation-

ally inexpensive workflow. Ordinary Kriging is the preferred methodology due

to demonstrated robustness and widespread application. Estimation methods

inevitably result in smoothing of the distribution of estimates relative to the

expected variability of the SMUs. The histogram smoothing of kriging is often

more than that expected for the support effect. To counteract this, parameters

could be adjusted to limit the search neighborhood for each estimate. Through

an iterative process the desired distribution can be matched through tuning

the search radius and number of data used in the kriging estimator. Tun-

ing the kriging neighborhood fixes histogram smoothing but it can introduce

significant conditional bias.

In contrast, quantifying uncertainty and providing a range of possible val-

ues for each SMU allows for an unbiased model that reproduces the appropriate

histogram without the need for artificially reducing the search neighborhood.

Four methods will be presented and discussed in this thesis, all of which gen-

erate a local distribution for each SMU being considered. There are pros

and cons to each method regarding the complexity of the method, accounting

for the support effect, and the assumptions that are required. When pre-

pared carefully each method is capable of reproducing the SMU distribution

expected in the future. The four methods are; MultiGaussian Kriging, Se-

quential Guassian Simulation, Uniform Conditioning and Indicator Kriging.

4



Each of these four methodologies is aimed at the same goal of generating a

dependable distribution of uncertainty. MultiGaussian kriging and Sequential

Gaussian simulation rely heavily on the well known and widely used quantile to

quantile Guassian transform paired with the known properties of the Guassian

distribution. Uniform conditioning also utilizes the Guassian transform but in

conjunction with a more important assumption of bivariate Guassianity dictat-

ing change of support and variance reduction. Indicator Kriging is unique as

a non-parametric method with no strong preference on the Gaussian distribu-

tion, but necessitates a complex workflow requiring additional variograms and

substantial user input for interpolating and extrapolating local distributions.

1.5 Motivation & Goals

For all methods of quantifying local uncertainty, the long standing argument

against a model of this type has been the increase in computational expense

and complexity in the calculations. When a series of equiprobable values for

each SMU must be generated and considered, the computational expense can

be higher, however; computer processing speeds ands parallelization makes

these calculations possible. The process for computing resources, reserves

or any other important transfer function, including mine planning, must be

performed on each model.

The effort required to process, say, one hundred models is significant. A

variety of strategies for summarizing or localizing a model of uncertainty have

been developed as a potential middle ground to avoid working with the entire

model of uncertainty. These strategies include summary measures such as the

probability to be within a certain percentage of the mean, extracting specific

probability quantiles, ranking realizations, or the recently popular localization

of uncertainty. Localization of uncertainty has gained significant attention of

late and warrants some careful evaluation as a possible alternative to kriging.

The lure of generating a single model at the SMU scale without excessive

histogram smoothing is appealing, but this process can yield unsightly artifacts

and questionable local precision. In general, specific summary measures may
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be appropriate in some situations, but when possible the complete model of

uncertainty should be utilized.

Managing a model of uncertainty remains an issue. Kriging has been widely

implemented in commercial software; mining companies are familiar with krig-

ing, and the process of establishing resource and reserve estimates using a

single value is straightforward and widely used. The problem with modeling

uncertainty is the transfer of this uncertainty through mine planning and de-

cision making. Often this is avoided by calculating the expected value of each

local distribution.

The status quo of considering only a single model despite the availability

of more robust techniques is the motivation of this thesis. The goal of this

thesis is to challenge that status quo through improved understanding of the

four techniques available for modeling local uncertainty. This includes; im-

proved volume variance reduction dictated by locally varying parameters, two

new techniques for artifact reduced localization, and a case study to showcase

practical implementation for modeling uncertainty to improve mine planning

and decision making.

1.6 Outline

To begin, a review of implementation aspects for modeling selective mining

units is required. The purpose of the selective mining unit in regards to re-

source and reserves evaluation, mine planning, and ore control must be con-

sidered. Also, the decision of appropriate SMU size must be assessed, guiding

principles for this decision will be discussed. Lastly, each of the four methods

available for modeling quantified uncertainty will be reviewed.

Building upon the reviewed modeling techniques, an investigation of vari-

ance reduction methods, that is, an understanding of how the variance of

point-scale uncertainty reduces to represent the block scale is needed. This

section will review currently available analytical and numerical techniques for

variance these reduction calculations. More importantly, the local dependence

of variance reduction will be explored through a simulation test. A simulation
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test provides insight into the effect of conditioning data on variance reduc-

tion. Recommended best practice for both analytical and numerical variance

reduction are presented for uncertainty quantification at the SMU scale.

Localization has gained significant attention for collapsing quantified SMU

uncertainty into a single block model for simplicity. The third chapter will

present and evaluate this technique. Two new techniques for artifact reduc-

tion in localized models are considered. The first of these techniques focuses

on an optimization approach while the second relies on a slightly more flexible

localization approach. The advertised advantages, and lingering issues of lo-

calization will be closely reviewed motivating a need to establish best practices

for utilizing uncertainty.

The final section of this thesis will focus on practical implementation of

SMU uncertainty. A practical comparison of available methods is warranted.

Modeling a Copper deposit with each technique will show both the advantages

and disadvantages of each method. The benefits of quantified uncertainty are

demonstrated through the Lerchs-Grossman algorithm for pit shell determina-

tion. Improved decision making, risk analysis, and improved mining planning

are possible through a deeper understanding of local uncertainty.
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Chapter 2

Implementation Aspects of
Local Uncertainty

2.1 Introduction

A number of steps are required to effectively model local uncertainty at the

SMU block scale. In the case of long term resource and reserves evaluation,

an appropriately sized SMU must be determined for modeling. Then, numer-

ical models at the SMU scale must be constructed. Four methods are used

that include: MultiGaussian (MG) Kriging, Sequential Gaussian Simulation

(SGS) , Uniform Conditioning (UC) and Indicator Kriging (IK) . The goal of

this chapter is to present the necessary background information regarding the

generation of SMU uncertainty that is required for more detailed discussion of

post processing and effective management of the model produced.

2.2 Selective Mining Units

In practice, the final tonnage and grade at the time of mining is dictated by

many factors as well as additional information that will be gained prior to

final selection. For this reason two separate models are required. For long

term planning, a model is constructed at the SMU scale. At the time of

mining; a higher resolution and better informed ore control model will be used

to determine final ore and waste selection. Prior to mining, it is impossible

to predict the high resolution variability and the subjective factors that will

ultimately impact the final quantities of ore and waste.
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2.2.1 The Information Effect

Some of the SMUs will be misclassified in the long term estimation process.

Even at the time of mining, ore and waste selection is an imperfect process that

relies on estimated ore grades and the spatial configuration of ore and waste.

The increase in available information from the time of resource modeling to

the time of mining can impact the classification of SMUs and changes the

distribution of experimental data to better represent the true variability. The

issues of misclassification, increased information and the potential dilution of

ore grade based on selectivity is known as the information effect. This has been

established in a number of references, including Rossi and Deutsch (2014) and

Chilés and Delfiner (2012).

The addition of information leads to increased local precision and variation

in the estimates. It is impossible to account for this variability accurately at a

small scale across the entire domain with widely spaced data. For this reason

long term modeling takes place at the SMU scale, where an average value over

a larger volume of rock can be estimated more reliably. Even so, the SMU

grades cannot be predicted with perfect accuracy; otherwise, mining could be

more selective when closely spaced production sampling becomes available at

the time of mining.

2.2.2 Optimal Size of Selective Mining Units

The appropriate SMU size has been a topic of some discussion. Ideally, the

SMU scale model will generate an estimate of ore tons and grade similar to

that which will be found at the time of mining. To accomplish this, the volume

of an SMU must be determined with regard to the mining process that will

take place. An SMU should represent the smallest volume of rock that can

be selectively mined for separation of ore and waste based on the available

information. Of course, at the time of mining additional grade information

paired with geochemical and geometallurgical measures will impact these re-

sults. An average grade over an appropriate volume of rock should account

for the impact of these additional factors and yield similar results as the final
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ore control model.

There are multiple ways to determine the optimal SMU size. Some complex

methods for simulating blast hole density and information have been suggested

for this purpose (Leuangthong et al., 2004). Journel and Huijbregts (1978)

suggest one half to one third of the data spacing as a guideline for the sides of

each SMU as a general guideline. The vertical size of each block can be dictated

by the mining method. In an open pit setting, SMUs with a height equal to

that of the bench are practical for mine planning while in an underground mine

a height equivalent to the size of anticipated lifts may be appropriate (Rossi

and Deutsch, 2014). Practical experience and reconciliation with historical

production are also considered when the professional chooses an SMU size.

This size must be larger than the equipment bucket width and large relative

to blast movement. This will allow adequate estimation and quantification of

uncertainty at a scale relevant for future mining.

2.2.3 The Panel Scale

In addition to determining a reasonable SMU size for the task at hand some

methods require selection of an appropriate panel size. A panel can be de-

fined as a group of SMUs. In this thesis panels will be required for Uniform

Conditioning as well as Localization. In the process of Uniform Conditioning

panels are a rectangular volume which contains a number of SMUs. In local-

ization, panels are often regularly shaped but some flexibility is permitted and

SMUs belonging to a single panel are not required to be contiguous. In both

cases the number of SMUs contained within each panel should be carefully

determined. Although circumstances specific to each project may play a role

in this decision some guidelines are suggested here. When regularly shaped,

panels are being considered the SMU grid should nest neatly within the panel

scale grid. The grids ought to have the same origin and SMUs should not be

split between multiple panels. For any type of panel the number of SMUs is

recommended to between ten to one hundred. This will provide enough SMUs

in each panel that a well informed panel scale distribution can be compiled

while maintaining a reasonable resolution at the panel scale.
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2.3 Estimation Methods

Although not the focus of this thesis, estimation methods are common practice

in mining thus some background information will be given. In an estimation

framework, a single value is estimated for each unsampled location within the

model. Estimates are normally a weighted average of samples in the vicinity

of the unsampled location. The challenge in this methodology is determin-

ing an appropriate weighting scheme. Distance based methods are available,

such as inverse distance or inverse distance squared but these methods do not

incorporate details of data redundancy and spatial structure. Kriging, the pre-

ferred method, calculates weights based on a variogram model that quantifies

the spatial relationship between all locations. Many references pertaining to

many forms of Kriging are available for a more detailed explanation includ-

ing Journel and Huijbregts (1978), Isaaks and Srivastava (1989), Deutsch and

Journel (1997), Chilés and Delfiner (2012), and Rossi and Deutsch (2014).

Kriging is a standard technique in geostatistics for estimation and as an

engine for modeling uncertainty. The goal of kriging is to calculate an esti-

mate as a weighted average for each unsampled location. The optimal weights

are determined to minimize the expected error variance. A variogram model

quantifies the spatial dependence for the calculated error variance. There are

many forms of kriging, but all are rooted in the same general linear estimator:

z∗(u□) =
n∑

α=1

λαzuα
∀ u□ ∈ A (2.1)

where z(uα) are the known data, λα are the optimal weights and z∗(u□)

is the estimate at the unsampled location u□, for all locations within the

geologic domain A (Rossi and Deutsch, 2014). In practice, each SMU is

estimated by weighting a number of nearby samples found in a local search

neighborhood and employing a variation of the linear estimator described.
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2.3.1 Simple Kriging

Simple Kriging is the most basic form of kriging. Imposing no constraints,

Simple Kriging yields the minimum error variance estimate. Prior knowledge

of the mean and a strict decision of stationarity are required. The known

mean is removed and estimates are performed on the residuals. The mean

is added to the estimated residuals for an unbiased estimate conditioned to

the original data. In many practical settings it is unrealistic to assume a

completely stationary domain which renders simple kriging impractical for

most situations.

2.3.2 Ordinary Kriging

Ordinary Kriging permits a less strict definition of stationarity and an un-

known mean. By constraining the sum of the weights to equal one, unbi-

asedness is achieved and the requirement of strict stationarity is relaxed; the

assumption is more local than global. Ordinary Kriging is a non-stationary

technique; only assuming a constant mean within the local search neighbor-

hood for each estimate. Due to the imposed constraint, the minimized error

variance from Ordinary Kriging is higher than that of Simple Kriging. Despite

this, Ordinary Kriging is common in practical application for its non-stationary

nature.

2.3.3 Histogram Smoothing and The Neighborhood Effect

All estimation methods yield an overly smooth distribution of estimates (Rossi

and Deutsch, 2014). This results in under representation of the high and low

values in the modeled domain giving an unrealistic estimate of overall tons

and grade. By limiting the search neighborhood for each estimate histogram

smoothing can be remedied at a cost. Through an iterative process, to de-

termine the necessary number of data per estimate, the predicted SMU dis-

tribution can be reproduced. However, limiting the number of data available

for each estimate can induce a significant conditional bias (McLennan and

Deutsch, 2002) and the smoothing of the spatial distribution of estimates is

not addressed.
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2.3.4 Conditional Bias

In resource modeling an unbiased model is desired. Unfortunately, estimation

techniques can be prone to conditional bias. As described by McLennan and

Deutsch (2002), a model is considered conditionally biased when the true grade

(Zv) is not equal to the estimated grade (Z∗
v ) for all grade ranges, z, that is:

E{Zv|Z∗
v = z} ≠ z (2.2)

Conditional bias can be minimized by using a large search neighborhood for

each estimate, at the cost of histogram smoothing. A limited search radius

increases conditional bias by over estimating high values and under estimating

low values to artificially increase the variability of the estimates. This can and

should be checked by cross validation or jacknife.

When considering an estimated model for mine planning it is impossible

to achieve both the correct distribution of block grades and a conditionally

unbiased model (Isaaks, 1999). Consider the two options:

1. Take advantage of the neighborhood effect and limit the number of data

per estimate to generate the correct distribution of block grades.

2. Minimize conditional bias using a large search radius and accept a smooth

distribution of block grades.

If the first option is chosen, the tons and grade above cut off can be accurately

estimated for mine planning but the estimated grades are conditionally biased.

The second option minimizes conditional bias but the estimated tons and

grade will not be accurate due to histogram smoothing. This is the oxymoron

described by Isaaks (1999). Estimation techniques force the practitioner to

choose between an unbiased model, or an accurate distribution of SMU grades.

To achieve both, probabilistic methods could be considered.

2.4 Probabilistic Methods for Quantifying Uncertainty

Geostatistical modeling is commonly based on widely spaced data leading to

inevitable uncertainty in estimation. Rather than accept inaccurate estima-
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tion methods, probablisitic methods are available to quantify the uncertainty

and generate a distribution of possible values for every unsampled location.

MultiGaussian Kriging, Sequential Gaussian Simulation, Uniform Condition-

ing and Indicator Kriging are discussed here. These are the most widely used

techniques in practice.

2.4.1 MultiGaussian Kriging

MultiGaussian Kriging relies heavily on the principles of the Gaussian distri-

bution and the well known quantile to quantile normal score transform. The

methodology is relatively straightforward. An overview of the steps is given

here, the process is well documented in many references including (Rossi and

Deutsch, 2014). A known distribution of grade from the composite data, is

transformed to a Gaussian distribution with a mean of zero, and a variance

of one. The Gaussian transformed distribution is considered as conditioning

data for kriging that is applied within the framework of a multivariate Gaus-

sian distribution.

Simple kriging is performed at the point scale across the domain. This

process generates a conditional mean and variance in Gaussian units for each

location. To generate the local conditional distributions in original grade units,

post processing is required. The local Gaussian distribution can be back trans-

formed to original units using a similar quantile to quantile transformation.

The final result is a local distribution of uncertainty, in original units, for each

unsampled location. Only point scale kriging is appropriate when considering

Gaussian transformed data, therefore; the resulting local distribution is also

at the point scale. Each local distribution can be upscaled to the appropri-

ate SMU scale. Analytical methods such as the Affine Correction are often

employed for this purpose and will be discussed in Chapter 3.

MultiGaussian Kriging is fast, straightforward and provides a measure of

local uncertainty. Post processing relies on an analytical variance correction

and no assessment of joint uncertainty is available. The measure of uncer-

tainty generated by MultiGaussian kriging only pertains to a specific SMU,

independent of uncertainty at surrounding locations. Joint uncertainty can
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only be achieved through multiple realizations via a simulation technique like

Sequential Gaussian Simulation.

2.4.2 Sequential Gaussian Simulation

Sequential Gaussian Simulation (SGS) makes similar assumptions as Multi-

Gaussian Kriging but quantifies uncertainty through a set of realizations rather

than a local conditional distribution for each SMU. For each location in a re-

alization one simulated value is drawn from the local conditional distribution

and then retained to condition subsequent locations. Considering previously

simulated values preserves joint uncertainty between all locations. Performed

at the data scale, this process correctly reproduces the histogram of the vari-

able being modeled. Multiple realizations provide a more complete assessment

of uncertainty. This technique has been discussed in many geostatistical texts,

including: Deutsch and Journel (1997), Chilés and Delfiner (2012), Rossi and

Deutsch (2014).

Sequential Gaussian Simulation, like MultiGaussian kriging, requires the

data to be transformed to a standard normal (Gaussian) distribution. A lo-

cation requiring a simulated value is then chosen at random. By solving the

normal equations (similar to Simple Kriging), a conditional mean and variance

are generated for the conditional distribution at this location. In Gaussian

units, these two parameters define the local conditional distribution. A ran-

dom value is chosen from this distribution and retained as a simulated value

at this location. This simulated value is now incorporated into the set of data

available for estimating the conditional mean and variance at surrounding lo-

cations. This process is repeated for the entire grid, retaining a simulated value

at each location to complete a realization. The set of realizations is generated

at the data scale and change of support is required to represent SMU scale un-

certainty. Variance reduction, in regards to the support effect is accomplished

by block averaging. This requires averaging the point scale simulated values

within each SMU volume to generate a set of SMU scale realizations and will

be discussed further in Chapter 3.

Sequential Gaussian Simulation is more complex than MulitGaussian Krig-
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ing and requires additional computational time. Both the histogram and var-

iogram are reproduced with statistical fluctuations. Histogram smoothing is

avoided, yielding a more realistic portrayal of the deposit. Utilizing multiple

realizations for resources and reserve evaluations requires updating standard

practices and transferring uncertainty through to long range planning and eval-

uation. Rather than calculate resource and reserves in a conventional fashion

with a single model, the set of all realizations must be considered.

2.4.3 Uniform Conditioning

Uniform Conditioning is unique, this technique estimates a local distribution

of SMU grades within larger scale panels. The panel scale is a larger volume

that contains a number of SMUs and that is more reliably estimated. A robust

estimate, in original units, at the panel scale is the basis of Uniform Condi-

tioning. The panel scale estimates are transformed to a Gaussian distribution.

A bivariate Gaussian relationship between the SMU scale and Panel scale is

assumed based on calculated change of support coefficients (Neufeld, 2005).

From the bivariate relationship between the SMU and panel scales a mean and

variance, in Gaussian space, can be calculated for the SMU distribution within

each panel. Prior to back transformation, the proportion of the SMU distri-

bution above a chosen cutoff can be calculated for each panel. The SMU scale

Gaussian distribution can then be back transformed for a local distribution of

uncertainty in original grade units at the SMU scale within each panel.

Uniform Conditioning is simple and requires little computational expense

over kriging. In some situations this process may be too simple. As the name

implies, Uniform Conditioning assumes that conditioning data are regularly

spaced. This requirement paired with the globally defined change of support

coefficients needed to define the relationship between the SMU distribution

and the panel values leaves little room for local variation. Recent work by

Emery (2008) suggests the use of locally varying change of support coefficients

for a more accurate change of support.

The most notable inconvenience of Uniform Conditioning is the panel scale

resolution of the model. Although the distribution of uncertainty represents
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the SMU scale, no local precision is offered within each panel. The increasingly

popular technique of localizing panel scale distributions offers histogram re-

production and resolution at the SMU scale through post processing (Abzalov,

2006). Localization aside, Uniform Conditioning offers a straight forward

methodology for situations appropriate to the panel scale.

2.4.4 Indicator Kriging

The three aforementioned methods for quantifying uncertainty depend heav-

ily on the Gaussian distribution. Indicator Kriging is non parametric. Rather

than estimate the parameters of a Gaussian distribution, the distribution of a

continuous variable is estimated via binary indicators (Journel, 1983). Indica-

tors are kriged and local distributions are constructed through post processing

to generate conditional distributions at the SMU scale.

Specified grade cutoffs define the binary transformation of the distribution.

Grade cutoffs are chosen from the representative global distribution such that

the series of indicators adequately describes the cumulative distribution func-

tion (CDF) . The number of indicators and the density of discretization is

defined by the practitioner. A variogram model is required for each indicator.

The set of variogram models must vary smoothly, and the spatial relationship

of each indicator cannot be assumed entirely independent of the others. Once

established, the set of variogram models is used to krige each indicator at the

point scale.

Each kriged indicator yields an estimated point on the local conditional

CDF for each unsampled location. Order relations corrections, interpolation

between points and tail extrapolation are performed to construct the local

distribution for the continuous variable. Similar to MultiGaussian Kriging,

local distributions require variance reduction by an analytical technique to

represent the SMU scale.

The most notable drawback of Indicator Kriging is the potential for order

relations issues in local conditional distributions which can be fixed in post

processing as described by Rossi and Deutsch (2014). Although work inten-

sive, Indicator Kriging requires little computational expense over kriging and
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provides a non-parametric approach to quantifying local uncertainty allowing

the user to reduce reliance on the Gaussian distribution.

2.5 Recommendations

Each of the four methods discussed can generate a model of uncertainty, but

the complexity of implementation and the final results differ. Determining

which technique is appropriate can be based on prior experience or company

policy. When the decision is left to the practitioner the options must be eval-

uated relative to the ease of use, computational expense and the reliability of

resulting model. Cross validation and reconciliation with historical production

data would also provide a basis to choose one option over the other.

2.5.1 Complexity and Computational Expense

The complexity of geostatistical modeling is often overshadowed by the chal-

lenge of geologic domaining, effective data management and preparation. In

most cases, complexity is minimized when possible. MultiGaussian Kriging

and Uniform Conditioning are the simplest of the methods described. Both

require one kriging and a table look up to produce a measure of local uncer-

tainty. Indicator kriging is more complex. Choosing appropriate cutoff values,

modeling the entire suite of variograms and reconstructing local distributions

requires substantial user input and often multiple iterations.

In terms of computational expense, simulation stands alone as the most

memory and time intensive method. Through parallelization and increased

computing power the additional expense is manageable. Once a set of re-

alizations has been generated, the benefits of joint uncertainty coupled with

histogram and variogram reproduction likely out weighs the cost in computa-

tional expense of simulating.

2.5.2 Joint Local Uncertainty

It is important to distinguish the two different uncertainty measures men-

tioned; local uncertainty and joint uncertainty. All of the above methods pro-

vide a distribution of possible values for each SMU, this is local uncertainty.
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Only simulation provides joint uncertainty through multiple realizations. This

implies that for any given realization the value estimated at an unsampled lo-

cation is dependent on surrounding estimates. For this reason only a series of

realizations can be used to quantify global uncertainty across the domain or

in a given area of interest.

As an example, consider a planned cut (A’) to be mined as part of the

annual production at a mine within a larger domain. The designed cut is

a collection of appropriately sized SMUs, one of which is highlighted (v) in

Figure 2.1. Each method described can provide a distribution of possible values

for the highlighted block (Fv(u)), but only through a series of realizations

(F ℓ,...,L) of cut A’ is it possible to calculate the uncertainty in total tons and

grade within a specific volume containing a number of SMUs. Uncertainty in

total tons, grade, or other important factors can be calculated for nearly any

volume larger than an SMU, including a single cut or the entire domain.
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Figure 2.1: Measures of local uncertainty generate a distribution of values for block
v while a complete set of simulated realizations make it possible to evaluate the
uncertainty in a larger volume A′. Joint uncertainty through multiple realizations
yields multiple responses for the variable of interest as shown in the sketch at right.

Considering joint uncertainty through a transfer function yields a distribu-

tion of results. In the case of cut A’ this requires performing the calculations

on each realization for a distributions of responses as shown schematically

in Figure 2.1. Rather than accept estimates that are likely inaccurate, or a

distribution only pertaining to a single block, joint uncertainty quantifies the

possible outcomes for a given cut, or the entire domain, and can be transfered
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through the planning process.

Considering uncertainty in planning and risk evaluation is ideal, but when

exceptions arise and a single value or a specific local distribution is required, a

series of realizations can provide these measures as well. A single block value

can be extracted from a set of realizations to form a local distribution similar

to the results of Indicator Kriging or MultiGaussian Kriging. If circumstances

require a single estimate, the expected value of each local distribution can be

calculated. Each of these measures can be calculated from a set realizations,

but only simulation can generate joint uncertainty for evaluating uncertainty

in volumes larger than an SMU.

2.5.3 A Common Format

Although only simulation provides joint uncertainty via realizations, a local

distribution of uncertainty can be used in transfer functions for resource calcu-

lation and localization. To make this practice more convenient a standardized

format is necessary. To effectively manage a local distribution it can be dis-

cretized into a series of quantiles ordered in a similar fashion to a series of

realizations.

The ordering of gridded files is often specific to individual software plat-

forms, the open source GSLIB format is used as a reference here. In the

GSLIB convention a regular grid is defined in a specific order beginning at

the lowest, Southwestern-most SMU. Blocks are listed increasing to the East,

then row by row to the North, and finally level by level upward, i.e., x cycles

fastest, then y, and finally z (Deutsch and Journel, 1997). In the case of mul-

tiple realizations this ordering is repeated for the total number of realizations

within the set. This format can be extended to local distributions of uncer-

tainty by ordering the first quantile for each SMU in this fashion, followed by

a complete ordering of the 2nd quantile from each local distribution etc. This

format is different than the standard output from existing GSLIB software for

MultiGaussian Kriging, Uniform Conditioning and Indicator Kriging. Post

processing programs for Uniform Conditioning, Indicator Kriging and Multi-

Gaussian Kriging have been developed and updated to generate an additional
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output file in the format described (see Software Appendix). The common

format provides ease of use to the practitioner for flexible transfer functions

regardless of the geostatistical method.

2.6 Conclusions

Estimation methods are commonly used within the mining industry. It is

impossible to construct a conditionally unbiased model with the correct distri-

bution of estimates due to histogram smoothing. Additionally, a deterministic

model overlooks inevitable uncertainty in the estimates. Considering an unbi-

ased model of uncertainty with the correct distribution of estimated values is

a more appropriate for evaluating recoverable reserves. Uncertainty for long

term planning is most valuable when available at both the local and global

scale, this is possible only via simulation. Despite the marginal increase in

time and complexity, the benefits of joint uncertainty support simulation as

best practice.

In a practical setting, managing local distributions of uncertainty or multi-

ple realizations can be challenging. For convenience, local distributions can be

reduced to a single value by calculating the expected value for each SMU. This

is not recommended. Similar to kriging, only considering the expected value

of each distribution leads to issues of histogram smoothing and conditional

bias. It is advantageous to consider the entirety of the SMU scale distribution

through a transfer function.

Prior to processing results through a transfer function, three of the four

methods discussed requires a change of support technique to accurately repre-

sent the SMU scale distribution. Uniform Conditioning is the exemption due

to an inherent change of support process within the methodology. Fast and

simple analytical methods such as the Affine or Indirect Lognormal correc-

tions are often applied to the data scale results of MultiGaussian and Indica-

tor Kriging. Multiple realizations are commonly upscaled from the simulated

point scale to the SMU scale through block averaging. The effectiveness and

global assumptions of some change of support technique have been questioned
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and studied by some, including: Rossi and Parker (1993), Emery (2008), and

Chilés and Delfiner (2012). This warrants further investigation into each vari-

ance correction technique. A careful assessment of how to best account for the

support effect and accurately represent SMU scale uncertainty is required.
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Chapter 3

Location Dependence of Change
of Support Parameters

3.1 Change of Support

A valid model of uncertainty at the SMU scale requires a change of support

model since MutiGaussian Kriging, Simulation and Indicator Kriging occur

at the point scale. A change of support model specifies the upscaling to the

appropriate SMU size. Uniform conditioning has a panel scale and an SMU

scale change of support model embedded as part of the process while other

methods require post processing.

Multiple methods have been developed for change of support. The Affine

Correction and Indirect Lognormal Correction are analytical techniques de-

pendent on a calculated variance reduction factor. The more complex Discrete

Gaussian Model (DGM) depends on a bivariate Gaussian assumption between

scales and a series of Hermite polynomials to fit the distribution and facilitate

the relationship between scales. Lastly, a numerical approach is available to

directly average the modeled data scale values within the larger SMU volumes.

The goal of each technique is to accurately portray the modeled distribution

at the SMU scale for resource evaluation, risk analysis and mine planning.

3.1.1 The Support Effect

The support effect describes the reduction in variability from the data scale to

the defined SMU block scale. This is contrasted with the information effect.

While the information effect predicts the increase in variance due to additional
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data, the support effect accounts for a decrease in variability due to an increase

in scale.

The support effect can be understood by averaging the point scale data

values to the volume of interest. Chilés and Delfiner (2012) describes this by

the following summarized properties:

1. The block mean grade, without consideration of a cutoff, is independent

of block size.

2. The marginal distribution of block grades gets narrower around the mean

as the support volume increases.

3. The marginal distribution of block grades tends to become Gaussian

when the support tends to infinity in all directions.

The variance of the global and local distributions in a probabilistic model

should accurately represent the grade information at the volume of interest.

This should be considered in conjunction with the information effect. The

increase in variance caused by the information effect can be predicted. It is

important that a resource model at the SMU scale reproduce the same variabil-

ity to confirm that the resources and reserves being estimated are reasonable.

3.2 Global Variance Reduction Methods

A geostatistical model at the data scale can be upscaled to represent SMU

volume through post processing. This requires a reduction in variance for each

SMU distribution. Standard variance reduction techniques assume a constant

change in variance for all locations regardless of the local circumstances such as

proximity to drillholes. A numerical example will show that variance reduction

varies across a domain depending on the conditioning data that are present.

3.2.1 The Global Variance Reduction Factor

Established analytical methods for variance reduction include the Affine Cor-

rection and the Indirect Lognormal Correction. These methods are com-

mon for post processing results of MultiGaussian Kriging or Indicator Krig-
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ing (Deutsch and Journel, 1997). Both methods start from data scale local

distributions and apply variance reduction as a post processing step. The

corrections rely on a variance reduction factor, fglobal, that is calculated in

expected value over the entire domain. This is the ratio of the block scale

variance to the data scale variance (Rossi and Deutsch, 2014). In practice,

the fglobal value is calculated using the average variogram (Equation 3.1). The

established relationship between the average variogram, γ̄, and the variance

reduction factor, fglobal, is given below:

γ̄(v, v) =
1

|v| · |v|

∫
v

∫
v

γ(x− y)dxdy (3.1)

The average variogram, γ̄, is equal to the expected value of the variogram,

γ, within the block v. This is used to approximate the global correction factor:

fglobal = 1− γ̄(v, v)

σ2
(3.2)

(Rossi and Deutsch, 2014)

In practice, Equation 3.2 is commonly used to evaluate the global volume

variance correction factor. Although Equation 3.1 presents an integration

approach to gammabar calculation, this is calculated numerically in a practical

setting. This is accomplished by discretizing the SMU volume of interest into

a number of points within the block. The distance from each discretized point

within the block to all other points in the block is measured and a variogram

value can be calculated using the variogram model fit to the experimental data.

These values are averaged for an approximation of the average variogram. The

approximated average variogram and the variance of the point scale data are

used to calculate the to global variance correction factor.

3.2.2 The Affine Correction

The Affine correction is appealing for its simplicity. This method keeps the

shape of the distribution exactly the same and reduces variance based on the
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calculated global variance reduction factor, fglobal, by transforming values of

the sample distribution as shown in Equation 3.3.

z′ =
√
fglobal · (z −m) +m (3.3)

Where z is a value from the distribution requiring variance reduction, m is

the mean of that sample distribution, fglobal is the variance correction factor

calculated in Equation 3.2, and z′ is the transformed value corresponding to

the distribution with a reduced variance.

Under the permanence of shape assumption, the affine correction is appro-

priate for situations where fglobal ≥ 0.7 (Journel and Huijbregts, 1978). More

recent findings by Rossi and Parker (1993) suggest that even for small changes

the Affine correction provides incorrect results. Despite its limitations the

affine correction is commonly implemented for use as a simple post processing

step to reduce variance. Despite these findings, the Affine correction using

a global reduction factor is common in resource modeling (Vann and Guibal,

1998).

3.2.3 The Indirect Lognormal Correction

The Indirect Lognormal Correction assumes that both data and SMU scale

distributions are lognormal with the same mean and different variances. Under

this assumption change of support is accomplished in a series of three steps as

described by Isaaks and Srivastava (1989) and Rossi and Deutsch (2014).

First, solve for the coefficients of a and b:

a =
m√

fglobal · CV 2 + 1

[√
CV 2 + 1

m

]b

(3.4)

b =

√
ln(fglobal · CV 2 + 1)

ln(CV 2 + 1)
(3.5)

where CV is the coefficient of variation of the data scale distribution, m is

the mean, and fglobal is the variance reduction factor as calculated in equation
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3.2. The calculated a and b values are used to transform quantiles of the SMU

distribution by the equation:

q′ = aqb (3.6)

Finally, a mean correction is required unless the two input distributions are

truly lognormal:

q′′ =
m

m′ · q
′ (3.7)

The indirect lognormal correction reduces the variance based on the calcu-

lated fglobal factor in a predictable fashion. The assumption that both distri-

butions are lognormal is limiting, but no artificial minima or maxima values

are introduced as in the Affine correction.

3.2.4 The Discrete Gaussian Model

The required assumptions of the Indirect Lognormal and Affine Corrections

are limiting. Sample distributions are rarely lognormal and the permanence of

shape is unrealistic. The Discrete Gaussian Model (DGM) is a more robust al-

ternative requiring neither of these assumptions. The Discrete Gaussian Model

uses orthogonal Hermite Polynomials to fit and scale the sample distribution

by a variance correction factor similar to fglobal. An overview of the Discrete

Gaussian Model will be given here. For a more comprehensive explanation

see: Machuca-Mory et al. (2008) and Chilés and Delfiner (2012).

To achieve variance reduction via the Discrete Gaussian Model the data

scale experimental distribution is fit to a standard normal (Gaussian) distri-

bution by an anamorphosis function:

z(v) = ϕ(y(v)) ≈
∞∑
p=0

ϕpHp(y(v)) (3.8)
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where z is a data in original units, y is value in Gaussian units, ϕp is the

coefficient for the p-Hermite Polynomial value Hp(y(v)) (Rossi and Deutsch,

2014). The relationship between the original distribution and the Gaussian

transformed distribution is described by this anamorphosis function and the

Hermite Polynomials fit to the original distribution. Change of support is

accomplished by scaling the anamorphosis function coefficients by the change

of support coefficient, rp, to the appropriate volume, v:

Z(v) = ϕ(yv(v)) =
∞∑
p=0

rpϕpHpY (v) (3.9)

where r is determined based on the variance at the SMU scale as calculated

using the average variogram:

σ2
v = σ2

u − γ̄v,v ≈
n∑

p=1

r2pϕ2
p (3.10)

This technique yields an SMU scale distribution that represents the variabil-

ity predicted by the average variogram. The Discrete Gaussian Model is more

robust than either the Affine or Lognormal Corrections because the Gaus-

sian transform is general and the process naturally leads to a more Gaussian

distribution as the scale is increased (Rossi and Deutsch, 2014).

The Discrete Gaussian Model is suited to predicting the change in variance

when increasing the volume to the SMU or larger scale. Uniform Conditioning

is unique because the estimates must be downscaled from panel estimates to

the SMU scale distributions. Two different change of support coefficients are

considered, rV for the panels and rv for the SMU distribution. These are

incorporated into the Discrete Gaussian Model as shown in equation 3.9. It is

assumed that the ratio between the change of support coefficients at each scale

identifies the correlation coefficient, ρ, that describes the bivariate relationship

between the normal scores of the two distributions (Figure 3.1).
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Figure 3.1: The SMU scale distribution in Gaussian units is inferred from normal
score of the panel distribution using the correlation coefficient. It is assumed that
the correlation coefficient is equal to the ratio of the two r values.

Similar to the variance reduction factor, the change of support coefficients

used in the Discrete Gaussian Model are assumed constant throughout the

domain. When local conditional distributions are considered the assumption

of a global variance correction factor or change of support coefficient is prob-

lematic, this will be demonstrated by a simulation test.

3.3 Local Variance Correction

Each of the change of support techniques presented relies on a global assump-

tion in some way. In the case of the Affine Correction and the Lognormal

Correction this is the global variance correction factor. In the case of the

Discrete Gaussian Model the change of support coefficients dictate the change

in variance. Emery (2008) takes a close look at the DGM technique for the

Gaussian case embedded in Uniform Conditioning, concluding that the change

of support coefficient varies locally and is closely related to the simple kriging

variance. The local variation of the change of support coefficients in the Gaus-

sian case motivates further investigation of local variation for non-Gaussian
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distributions in a Uniform Conditioning framework as well as the local depen-

dencies of the variance correction factor, applied in the Affine and Lognormal

Corrections.

3.3.1 A Numerical Approach to Variance Correction

The simulation based tests designed to challenge global change of support as-

sumptions take advantage of the simple and dependable block averaging tech-

nique for variance reduction. Commonly applied in a simulation framework,

realizations at a high resolution (the data scale) are upscaled by averaging

simulated data scale values within each SMU volume.

By averaging simulated values within each SMU the high and low values

are dampened, therefore appropriately reducing the variance at each location.

This process is performed for each SMU, over all realizations. There is no

dependence on a reduction factor, global assumption, or permanence of shape

making this strategy the most robust technique for variance reduction.

3.3.2 Local Variance Correction for Analytical Methods

To test the consistency of the global variance correction and the relationship

of the point and block scale dispersion variances for each SMU simulation is

used. To accomplish this, a series of high resolution realizations, conditioned to

synthetic data, are generated. To check the value of variance correction factor

locally it is calculated for each SMU. This requires calculating the dispersion

variance at both the point and block scale for each SMU in the domain.

Simulation Test of the Variance Correction Factor

To begin, a synethic dataset is generated via unconditional simulation using

an isotropic spherical variogarm with a range of 100 for the normal scores:

γ = 0.1+0.9sph100. The realization is transformed to a lognormal distribution

with a mean of one and a standard deviation of two. Data with variable spacing

are extracted from this realization are displayed in Figure 3.2.
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Figure 3.2: Location map and histogram of original data for simulation based
example. Note: the high value above 5.00 represents all higher values. This is a
synthetic dataset therefore no units are given for distance or grade values.

In addition to the location map a histogram is also displayed in Figure 3.2.

The distribution of data is positively skewed with a declustered mean of 1.59

and a standard deviation of 3.64. Sequential Gaussian Simulation is used to

create two hundred realizations conditional to the synthetic data. The same

variogram used to generate the data is again used for simulation in Gaussian

space. After simulating, realizations are back transformed to lognormal units

and checked for histogram reproduction in Figure 3.3
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Figure 3.3: The distributions of the two hundred point scale realizations plotted
against the weighted original data. Units are arbitrary for this synthetic example.

A single realization from the set of two hundred is displayed in Figure 3.4

showing the anticipated high grade region east of center.
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Figure 3.4: A single realization from the set of two hundred. Units are arbitrary
for this synthetic example.

To calculate the dispersion variance at the point scale, realizations are post
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processed using postsim (Deutsch and Journel, 1997) to calculate both the

mean and variance at the point scale over the set of realizations. The point

scale dispersion variance is block averaged over a 5x5 SMU volume. This yields

the average point variance, D2(·, G), within each 5x5 SMU (Figure 3.5).
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Figure 3.5: The block averaged point variance, D2(·, G), for each SMU in the
domain. Units are arbitrary for this synthetic example.

The block variance, D2(v,G), is calculated using the same set of simulated

realizations. The results of the point scale simulations are block averaged to

SMU scale. Realizations at the block scale are post processed to calculate

the local distribution for each SMU. The block scale variance, D2(v,G), is

extracted from each local distribution and plotted in Figure 3.6.
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Figure 3.6: Block variance, D2(v,G), calculated for each SMU in the domain.Units
are arbitrary for this synthetic example.

To find the local variance correction factor for each block, the ratio between

the point scale variance and the block variance for each block is calculated for

each SMU.This generates the distribution local variance correction factors.
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Figure 3.7: Map of Local Volume Variance Correction factor.Units are arbitrary
for this synthetic example.
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The distribution of values calculated for the local variance correction factor

is displayed in Figure 3.8.
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Figure 3.8: Distribution of Local Volume Variance Correction values. For com-
parison, the global correction factor is 0.76 calculated using gammabar (Deutsch and
Journel, 1997).

The local variance correction factor, calculated from the conditionally sim-

ulated realizations is not consistent throughout the domain (Figure 3.7). The

distribution of local variance correction values has a mean of 0.40, with a min-

imum of 0.15 and a maximum of 0.67. The global correction factor is also

calculated, based on an inferred average variogram in original units for a value

of 0.76 (Equation 3.2).

The local correction factor is lower than the approximated global correction

factor and the spatial configuration shows higher values in areas of sparse data

(Figure 3.7). A set of two hundred unconditional realizations, generated using

the same reference distribution as the previous test, reveals that the local

correction factor approaches the global correction factor when no conditioning

data is present. The distribution below shows the calculated local correction

factor calculated from the set of unconditional realizations:
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Figure 3.9: Distribution of Local Volume Variance Correction values for the un-
conditional example. For comparison, the global correction factor is 0.76 calculated
using gammabar (Deutsch and Journel, 1997).

In this example the mean of the local correction factor values is 0.75, while the

global correction factor is approximately 0.76. These findings show that the

mean local correction factor is equivalent to the approximated global correction

factor when no conditioning data is present.

The results of the example simulation tests (Figure 3.7) suggest that a local

correction factor should be applied to the local distribution at each SMU to

accurately predict uncertainty at the SMU scale in the presence of condition-

ing data. A closed form analytical solution to the local variance correction

factor would be convenient; however, due to the non-linear transform to Gaus-

sian space this is not practical. For an approximation of the local variance

correction factor, the following steps are suggested:

1. Choose an a representative volume for a smaller scale study of local

variance reduction and simulate at a high resolution.

2. Extract the point scale variance for each location.

3. Block average the point scale variance within each SMU.
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4. Using the same set of realization, block average the simulated values and

extract the SMU scale variance.

5. Calculate the local correction factor for each location based on the ratio

of the average point scale variance to the SMU scale variance for each

block.

6. Build a relationship of the local reduction factor to a known statistic

such as: the mean, variance, grade, etc.

7. Use the defined relationship to approximate the local correction factor

for each SMU in the model.

To implement the suggested approximation method, consider the example

simulations previously generated (Figure 3.4). Having simulated a high res-

olution and calculated the point scale uncertainty the local correction factor

is known for this small area. A relationship between the Simple Kriging vari-

ance and the local correction factor is approximated by a logarithmic function

(Figure 3.10). Using the function fit to this relationship the local correction

factor can be approximated for any location in this small domain or extended

to a larger area, assuming the area tested is representative.
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Figure 3.10: The local correction factor plotted against the simple kriging variance.
The logarithm of a polynomial function has been fit to the plotted relationship for
use as a proxy. A similar method can be used when calculating the local correction
factor for the entire domain is impractical.

Approximating the local correction factor avoids the need to simulate the

entire model at a high resolution which can be time consuming and computa-

tionally expensive. Moreover, if the entire domain were simulated then there

would be no need for a heuristic fit for MulitGaussian or Indicator Kriging.

Once calculated for each SMU the local correction factor can be incorporated

into to the change of support methodology using the updated version of ei-

ther PostIK Loc or PostMG Loc. Both Programs allow for volume variance

correction using a gridded file of variance correction values corresponding to

each SMU. The updated parameter files for each are available in the software

appendix.
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3.3.3 Local Variance Correction in Uniform Conditioning

Based on the findings presented above one would suspect that the change

of support coefficients in the DGM framework also vary locally. This has

been demonstrated for the Gaussian case by Emery (2008). It is rare that

an inherently Gaussian distribution will present itself in a mining context;

therefore it is necessary to investigate the local dependence of the change of

support coefficients in a more realistic setting.

Testing for a Lognormal Case

For this example a lognormal distribution for a single panel is considered in

conjunction with a series of possible SMU sizes. First, the correlation coeffi-

cient, ρ, between the panel and SMU scales calculated for each SMU volume

considered is calculated numerically. Next, though a series of steps the change

of support coefficients are determined for each scale and the correlation coef-

ficient, ρUC , determined by Uniform Conditioning theory is calculated. The

numerically calculated correlation coefficient is compared to the theoretically

calculated values to test the reliability of the the UC approximation in the

presence of varying amounts of conditioning data. Examples with 1, 2, 3, 4

and exhaustive (86 data) are tested (Figure 3.11).

To begin, a single unconditional realization of the 64x64x10 panel is gener-

ated using a spherical variogram model: γ = 0.1+ 0.9Sph128. This realization

will be used for extracting any conditional data used in the following examples,

ensuring that the correct spatial relationship exists between the conditioning

data.

To find the numerical correlation coefficient between the panel and SMU

scales, one thousand realizations of the single 64x64x10 panel are generated

at the point scale. Each realization is block averaged from the point scale

to the panel scale, and also to the SMU scale. The bivariate relationship

between the two scales of the same set of realizations can now be determined

and summarized by calculating the correlation coefficient, ρ. This is done

for an unconditional case and for each of the trials with conditioning data
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(Figure 3.11).
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Figure 3.11: Configuration of conditioning data used in trials described.

Calculating the correlation coefficient via Uniform Conditioning theory in

non-Gaussian units involves a seres of steps:

1. The average variogram is calculated using the known variogram model

in Gaussian units (Equation 3.1). The Gaussian average variogram is

denoted as γ̄y in this series of steps to avoid confusion with γ̄ which is

the average variogram in logrnormal units. Using the Gaussian average

variogram the correlation in Gaussian space, ρy, is calculated:

ρy = 1− γ̄y (3.11)

2. Determine the relationship between the the Gaussian distribution and

the lognormal distribution of interest by solving for β2:

β2 = ln(1 + σ2
z/m

2
z) (3.12)

3. Use the calculated β2 value to solve for the average variogram in the

lognormal case, γz for both the SMU and panel scale.

ρz =
m2

z

σ2
z

[eβ
2ρy − 1] (3.13)
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γ̄z = 1− ρz (3.14)

4. Using the average variogram in original units, γ̄z, the correlation coeffi-

cient for the panel to scale can be approximated by Uniform Conditioning

theory. The GSLIB program, DGM is used for this purpose (Machuca-Mory

et al., 2008) and results are tabulated in Table 3.1.

Results in Table 3.1 are based on a single panel, of dimensions 64x64x10.

The SMU sizes considered all have a height of 10, and equal sides of 2, 4, 8, 16

and 32. These sizes are chosen so that the SMUs nest neatly within the single

panel. The first trial of a Gaussian unconditional example demonstrates that

the UC approximation to describe the bivariate relationship between scales is

reasonable for this setting.

The same test is performed with lognormal distributions at the SMU and

panel scale and the results do not match closely. Notice the theoretical correla-

tion calculated using the r coefficients is lower when compared to the Gaussian

example. Although not ideal, results for the Lognormal tests are consistent

for unconditional and conditional data configurations when there are few data.

Only when extensive conditioning data is used do the results change signif-

icantly. The final test, with an extensive grid of conditioning data reveals

a disparity in the numerically calculated correlation coefficient and that ap-

proximated by Uniform Conditioning. This suggests that in the presence of

substantial conditioning data the conditional SMU scale distribution predicted

by change of support may be incorrect.
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Table 3.1: Results of Testing the Theoretical Correlation Between Scales

Description SMUs Per Panel Numerical Correlation UC Correlation

Gaussian 2 0.87 0.88
Unconditional 4 0.82 0.84

8 0.79 0.82
16 0.78 0.81
32 0.77 0.79

Lognormal 2 0.83 0.90
Unconditional 4 0.75 0.86

8 0.71 0.83
16 0.69 0.83
32 0.67 0.82

Lognormal 2 0.83 0.90
1 Conditioning data 4 0.75 0.86

8 0.71 0.83
16 0.69 0.83
32 0.67 0.82

Lognormal 2 0.83 0.90
2 Conditioning data 4 0.75 0.86

8 0.71 0.83
16 0.69 0.83
32 0.67 0.82

Lognormal 2 0.83 0.90
3 Conditioning data 4 0.75 0.86

8 0.71 0.83
16 0.69 0.83
32 0.67 0.82

Lognormal 2 0.83 0.90
4 Conditioning data 4 0.75 0.86

8 0.71 0.83
16 0.69 0.83
32 0.67 0.82

Lognormal 2 0.79 0.85
Exhaustive Conditioning 4 0.66 0.79
(86 data) 8 0.60 0.77

16 0.58 0.76
32 0.56 0.75

3.4 Conclusions

Change of support is a required step in any geostatistical modeling work flow

for quantifying local SMU uncertainty. Conventional analytical techniques

and the Discrete Gaussian model require global assumptions to reduce the

variance of local conditional distributions. It is shown here, through simulated
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examples, that variance reduction is influenced by the spatial configuration of

conditioning data.

Analytical methods are commonly applied as a post processing step follow-

ing MultiGaussian or Indicator Kriging. To appropriately scale local distri-

butions and account for the change of support an approximation technique is

suggested. The details of this process may vary in practical application, but

it stands as an improvement upon the globally assumed variance correction

factor which can lead to overstating local uncertainty.

In the case of Uniform Conditioning and the Discrete Gaussian Model; re-

sults show that bivariate relationship between the SMU and panel scales is

difficult to generalize. This relationship is dependent on the shape of the dis-

tribution, and the conditioning data present in each panel. The test scenario

for a single panel validates the theoretical approximation of this relationship

for the Unconditional Gaussian case. Testing this relationship with a lognor-

mal distribution for few conditioning data shows a noticeable but consistent

difference between the actual bivariate relationship and that approximated by

Uniform Conditioning. The numerically calculated correlation between scales

and the approximated correlation become more dissimilar in the presence of

substantial conditioning data within each panel. The results of this test em-

phasize the required assumption that data should be sparse and uniform for

reliable results using this technique.

The caveats and approximations required for analytical methods and uni-

form conditioning may be appropriate when only the expected value of each

local distribution is of interest. If the entire SMU scale distribution is to be

utilized, the straight forward numerical approach of block averaging is recom-

mended. Although more computationally expensive than a simple analytical

solution, block averaging accurately reduces variance without a bias in the

final uncertainty.
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Chapter 4

Localization

4.1 Introduction

Localization is an alternative to estimation when a single model is required

for resource modeling. Unlike estimation methods, localizing a model of un-

certainty can reproduce the histogram without issues of conditional bias or

smoothing. Initially this technique was developed as an extension of Uni-

form Conditioning (Abzalov, 2006). More recently, localization has been ex-

tended to Indicator Kriging (Hardtke et al., 2011), Sequential Gaussian Simu-

lation (Boisvert and Deutsch, 2012) and MulitGaussian Kriging (Daniels and

Deutsch, 2014).

Localization has been developed using the panel scale as a reliable middle

step. The process is designed to approximate spatial grade distribution pat-

terns at an SMU resolution within each panel (Abzalov, 2006). Panel scale

distributions of uncertainty are only common in Uniform Conditioning. To

create a flexible localization process the method has been altered to upscale

SMU uncertainty to a panel. Within each panel SMUs are then ranked and

assigned a grade. The idea is that the set of SMU grades reproduces the

local distribution for that panel; therefore reproducing the global histogram.

Despite the benefit of a single model and histogram reproduction there are

drawbacks. The most noticeable issue is the unsightly edge-effect artifacts

(Boisvert and Deutsch, 2012). Less obvious are the issues of local precision

and questionable conditioning. The intent of this chapter is to provide an

overview of the localization process and to present two approaches for artifact
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reduction. Each method will be demonstrated through the same synthetic ex-

ample to compare and contrast the different localized models with the model

of uncertainty considered.

4.2 Methodology

Before beginning the process of localization it is assumed that a valid model of

uncertainty has been generated and is deemed representative of the domain.

The goal of localization is to replicate the same global histogram as the model

of uncertainty in a single SMU scale model.

First, consider the three scales of importance in a localized model. There

is the point scale, otherwise known as the data scale. This is the highest

resolution and is the scale at which experimental data is collected. The SMU

or block scale is the familiar scale at which resource evaluation takes place.

Lastly, the panel scale is larger and each panel contains a number of SMUs.

Each of the three scales is illustrated in Figure 4.1.

Figure 4.1: The three scales of importance to consider when localizing (Boisvert
and Deutsch, 2012).

Prior to localizing, the panel scale must be defined. Rather be limited to

the panel scale results from Uniform Conditioning, a more flexible option is to

create panel distributions from an SMU scale model. Local SMU distributions,

defined in the common format (described in Chapter 2), are assembled into

panels as a first step in localization.

Conventionally, panels in both Uniform Conditioning and localization have

been defined as a rectangular volume containing multiple SMUs. When lo-
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calization is considered as a post processing step some flexibility is permit-

ted. Three options are given in the GSLIB localization program: Regular,

Semi-regular and random panel options are available as pictured in Figure 4.2.

Panel size and the number of SMUs within each panel is determined by the

user. Ideally, a single panel should contain between ten and one hundred

SMUs to allow for reasonable discretization and representation of the panel

scale CDF. Panel size is not affected by the type of mining, size of equipment

or other considerations important to SMU size determination. With each style

of panel definition, the number of SMUs per panel should nest properly with

the chosen SMU grid.
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Figure 4.2: A simple example demonstrating each of the three panel definition
options available.

Local distributions from each SMU within the panel are compiled to form

a single CDF that quantifies the uncertainty for that panel. To summarize the

panel scale model of uncertainty to a single model at the SMU scale, each panel

distribution must be discretized into a series of grade classes. The process of

compiling local distributions into a single panel CDF, and then discretizing

into grade classes is shown in Figure 4.3.
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Local SMU distributions

1 2

15

Figure 4.3: The local distribution of each SMU within the panel is compiled to a
panel scale CDF, then discritized by grade class, a regularly defined panel containing
fifteen SMUs is used in this example (Boisvert and Deutsch, 2012).

Grade class determination plays an important role in localization. The

original methodology for localization uses grade classes of equal size (on the

probability scale) to discretize the panel CDF illustrated in Figure 4.4. Once

grade classes have been determined, the mean of each is calculated (Figure 4.4).

These are the values assigned to SMUs within the panel. Boisvert and Deutsch

(2012) suggest that instead of using the grade class mean, adding an element

of randomness to the grade values chosen from each grade class captures the

high and low extents of the CDF more accurately provides better histogram

reproduction. Both types of grade class discretization will be demonstrated in

the synthetic example to follow.
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Figure 4.4: The CDF pictured represents a panel containing ten SMUs. One the
y-axis the ten discretized grade classes are denoted by gray tick marks. The fourth
grade class (in increasing order) is highlighted to represent the simple calculation
and look up required that can be used to determine the grade class mean or a
random value within the grade class.

The appropriate value from each grade class is assigned to an SMU based

on its relative rank within the panel. Ranking is typically determined by

Ordinary Kriging. This requires kriging independent from the rest of the

modeling process. The kriged grades are not incorporated into the final model,

therefore avoiding any histogram smoothing. The lowest value localized grade

is assigned to the SMU of the lowest rank (lowest kriged grade) in the panel.

The localized value from the second grade class is assigned to the SMU ranked

second according to kriged grade. This is repeated until each localized grade

is assigned to the corresponding SMU. The same process is repeated for all

panels within the domain to generate a localized model as is portrayed in

Figure 4.13.

48



Panel Size for Scale

Figure 4.5: An example of set of realizations localized to a single model illustrat-
ing discontinuities at the boundaries of the regularly defined panels. Cooler colors
represent lower grade values while warmer colors represent higher values. Units are
arbitrary for this synthetic example.

Some observations can be made based on the localized model shown above.

The localized model shows a similar configuration of high and low grade re-

gions compared to the realizations that were localized. Although the spatial

distribution of grade appears reasonable, at a small scale, the panel boundary

artifacts are apparent throughout the model. These unattractive discontinu-

ities at panel boundaries are the most obvious drawback of localization. The

artifacts are caused by localization of each panel independent of surrounding

information. In the presence of a trend that extends across multiple panels it is

inevitable that the highest value SMUs in one panel will juxtapose lower value

SMUs in a neighboring panel as dictated by the trend, causing artifacts at

panel boundaries. A one dimensional example in Figure 4.6 helps to illustrate

this problem.
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Figure 4.6: A sketch of four panels in a one dimensional localized model with a
trend increasing from left to right. The red lines represent the localized SMU grades
within each panel and show discontinuities at the panel boundaries.

The trend across all four panels in the sketch above shows how panel edge-

effects are caused. With a trend of increasing grade from left to right in

Figure 4.6 the lowest value is consistently assigned to the SMU furthest left

and the highest value is always assigned to the far right SMU. This same effect

occurs in two and three dimensional models causing the pervasive artifacts.

Panel edge-effects are unavoidable in conventional localization. To address

this issue two methods have been explored and implemented. Each of the

techniques slightly alters the localization process yet still provides histogram

reproduction at the SMU resolution.

4.3 Artifact Reduction

The two methods developed for artifact reduction generate different results.

An optimization approach is presented as a post processing step for local-

ized models based on a regular panel definition. This method reduces panel

artifacts by minimizing the absolute difference between neighboring SMUs,

regardless of panel boundaries. A second approach is implemented during the

localization process by applying a more flexible definition of a panel. The

details of each technique are given here followed by a synthetic example to

showcase the flexible localization process with both artifact reduction tech-

niques.
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4.3.1 Optimization to Minimize Artfiacts

Artifact reduction by optimization is implemented using a greedy random

restart method. The objective function is designed to minimize the difference

between neighboring SMUs throughout the entire domain using the following

objective function:

Minimize =
N∑
i=1

n∑
j=1

|Z∗
ui
− Z∗

ui,j
| i = 1, . . . , N j = 1, . . . , n

(4.1)

Where Z∗
ui

indexes over all of the SMUs in throughout the domain, N . The

second term, Z∗
ui,j

, indexes over the total number of SMUs, n, surrounding the

location ui. Surrounding SMUs are considered regardless of panel boundaries.

The optimization process begins by evaluating the objective function globally.

Next, the grade values for two SMU values within the same panel are swapped.

The objective function is again evaluated. If the objective function has de-

creased, the switch is kept. If the object function increases the SMU values

are switched back to their original location. This process is repeated to re-

duce artifacts throughout the model. An example of a conventionally localized

model after artifact reduction by optimization is shown in Figure 4.7.
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Localized Model After Artifact Reduction

Panel Size for Scale

Figure 4.7: Artifact reduction performed on a conventionally localized model.
Cooler colors represent lower grade values while warmer colors represent higher
values. Units are arbitrary for this synthetic example.

The optimized model in Figure 4.7 shows improvement but the preexisting

spatial pattern is still obvious and limits the optimization process. Further

improvement can be gained by adjusting the initial localization methodology.

The optimization technique applied here is dictated, in part, by the starting

configuration of SMU grades within the panel and domain. If SMU grades

are placed randomly within each panel during the localization process, the

same model is produced at the panel scale while eliminating any preexisting

structure or spatial patterns at the SMU resolution. This provides a more

desirable starting position for the optimization algorithm. This method is

applied to the same model as shown in Figure 4.7, the results are shown in

Figure 4.8.
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Localized Model After Artifact Reduction

Panel Size for Scale

Figure 4.8: Artifact reduction performed on a randomly localized model. Cooler
colors represent lower grade values while warmer colors represent higher values.
Units are arbitrary for this synthetic example.

The artifact reduced model in Figure 4.8 shows an improvement over the

previous example. Artifacts at panel boundaries have been reduced. Although

free of artifacts targeted by the optimization process the model remains un-

realistic. Due to the fact that SMU values can only be rearranged within a

single panel the high and low are clustered with those of neighboring panels

through optimization. This results in a model that has areas of low grade in

regions that ought to show more consistent high grade. The same is true for

areas that ought to show consistent low grade. Artifact reduction by random

panel definition was attempted to reduce artifact while avoiding the spotted

appearance described.

4.3.2 Flexible Panel Definition for Artifact Reduction

An alternative approach to artifact reduction is the random panel definition

option described earlier and illustrated in Figure 4.2. The panel scale serves

an important purpose in localization as a middle ground between the model of
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uncertainty and an estimated single model; however, there is no requirement

that panels must be defined as a regular rectangular shape of contiguous SMUs.

By randomly assigning each SMU to a panel there are no distinct panel edges

to generate the edge artifacts.

This approach to artifact reduction requires little change to the localization

methodology. As before, the local distribution of values for each SMU in the

panel contributes to the panel scale CDF. The location and configuration of

the SMUs that make up a panel changes. Rather than a panel forming a

regular shape, the panel consists of SMUs scattered throughout the domain

and the localization process is performed as before. This is implemented in the

GSLIB style localization program by giving each SMU a panel identification

number. When it comes time to assemble a panel scale CDF, the distribution

from each SMU with that identification number is compiled into a single panel.

This slight change to the methodology requires no additional post processing

and provides the histogram reproduction that localization is known for. An

example of this is included in the synthetic example below.

4.4 A Synthetic Example

A synthetic example has been prepared to illustrate the localization and ar-

tifact reduction techniques discussed. This example will not cover the details

of SGS implementation but instead begins with a set of one hundred realiza-

tions that will be localized. The set of realizations will be localized using both

center point and randomly chosen grade values. Artifact reduced localization

techniques will also be applied to the same set of realizations to demonstrate

the improved appearance.

4.4.1 Localization of Simulated Realizations

To begin, a set of one hundred conditionally simulated realizations at a 3x3x10

meter SMU scale has been generated. The realizations have been created

with a major direction of continuity at 45 degrees from north and a minimum

direction of continuity 135 degrees from north. Two slices of a single realization
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from this set are visible in Figure 4.9.

Figure 4.9: Two slices from a single realization from the set of one hundred real-
izations. Units are arbitrary for this synthetic example.

Conventional parameters are used for the first localized model created from

this set of one hundred realizations. Panels are defined at a 30x30x10 volume so

that one hundred SMUs nest neatly within each panel. Once the panel scale

distributions have been assembled, CDFs will be discretized using regularly

spaced grade classes, and ranking is determined by Ordinary kriging. For

reference, two slices from the kriged ranking model are shown in Figure 4.10.
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Figure 4.10: Two slices from the Ordinary Kriging model used as a ranking scheme
for localization.Units are arbitrary for this synthetic example.

The localization process is fast, taking only minutes to localize the one

hundred realizations of 400,000 SMUs each. Once completed, histogram re-

production can be checked against the simulated realizations. In Figure 4.11,

the CDF of each realization is plotted in black while the localized model is

overlaid for comparison in red.
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Figure 4.11: Histogram reproduction of the conventionally localized model (red)
is shown in comparison to the one hundred simulated realizations (black). Units are
arbitrary for this synthetic example.

The localized model (red CDF) appears reasonable in comparison to the

simulated realizations (black) upon visual inspection, but the calculated stan-

dard deviation of 0.32 (variance of 0.10) is lower than expected. The random

sampling of grade classes described by Boisvert and Deutsch (2012) is imple-

mented to improve upon this issue. Randomly choosing a value within each

grade class yields better reproduction of the panel scale distribution through

more effective sampling of the upper and lower tails. The results of the local-

ized model using random sampling is shown in a similar plot, Figure 4.12.
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Figure 4.12: Histogram reproduction of the localized model using the random sam-
pling scheme (red) is shown in comparison to the one hundred simulated realizations
(black). Units are arbitrary for this synthetic example.

The random value sampling strategy for determining localized values im-

proves the overall histogram reproduction of the localized model. The standard

deviation of 0.34 (variance of 0.12), and visual inspection of the CDF com-

parison shows improvement. Plotted slices of the model reveal the unattrac-

tive panel edge artifacts described by Boisvert and Deutsch (2012) remain.

Two slices from the conventionally localized model illustrate this issue in Fig-

ure 4.13.
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Figure 4.13: Two slices from the localized model created using random grade class
sampling. Units are arbitrary for this synthetic example.

The two slices plotted from the localized model in (Figure 4.13) are at the

3x3x10 SMU scale but the 30x30x10 panel scale remains overprinted through-

out. The artifacts give the model an unrealistic appearance. This issue is will

be addressed via the artifact reduction techniques.

4.4.2 Artifact Reduction of the Localized Model

To effectively compare the conventionally localized model and the artifact re-

duced models, parameters are kept consistent where possible. Dimensions of

both panels and SMUs are maintained for artifact reduction via optimization.

Artifact reduction by random panel assignment maintains the same SMU di-

mensions and the same ratio of one hundred SMUs per panel, but in a random

configuration.

First, artifact reduction by optimization is generated. For best results the

localized model is re-created using a random set of values for SMU ranking

within each panel. At the panel scale, this model remains identical to the
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localized model shown in Figure 4.13 and will generate the same global dis-

tribution seen in Figure 4.12. At the SMU scale, the two models appear very

different and any spatial pattern within each panel has been erased by using

a random ranking scheme. Now, the optimization algorithm can be applied.

The number of iterations required to effectively reduce panel artifacts is

determined by the user. The goal of this process is to reduce artifacts for

visual improvement only. It is difficult to quantify exactly how many iterations

are required to erase panel artifacts. In this example, the objective function

does not reach an effective minimum until ten million iterations are (about

twenty-five per SMU). This amount of iterations seems like a large number

but the process is fast. The optimization process can be monitored by visual

inspection and by plotting the change in the global objective function against

iterations completed as shown in Figure 4.14.

1400000

1900000

2400000

2900000

0.0E+00 5.0E+06 1.0E+07 1.5E+07

Va
lu

e 
of

 G
lo

ba
l O

bj
ec
tiv

e 
Fu

nc
tio

n

Total Number of Iterations

Figure 4.14: The global object function plotted over a large number of iterations
for the example model containing 400,000 SMUs.

In practice, the optimization process can be run until panel artifacts have

been reduced to the practitioner’s satisfaction. Two slices of the reduced

artifact model in Figure 4.15 show that the distinct panel edges visible in the

conventionally localized model are no longer present.

60



Figure 4.15: Two slices from the artifact reduced model by optimization. Units
are arbitrary for this synthetic example.

Although free of panel edge effects, the optimized model shows high and

low grade clusters in regions that ought to display more consistent values. To

preserve the correct CDF within each panel, SMU values are only able to be

re-arranged within that panel. This makes it impossible to smoothly portray

larger scale trends that extend across multiple panels expected in a geologic

setting.

The alternative approach to artifact reduction is random panel definition.

This also requires re-creating the localized model but with no additional post

processing or optimization. By randomizing which SMUs belong to each panel

it is unlikely that any of the SMUs within a single panel will be contiguous,

eliminating panel structure that can cause artifacts. The one hundred SMUs

in each panel are ranked by Ordinary Kriged grade from the same model por-

trayed in Figure 4.10. Figure 4.16 shows the global histogram of the model

created using random panels, demonstrating that the histogram is well repro-
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Figure 4.16: Artifact reduction by random panel assignment. Units are arbitrary
for this synthetic example.

Two slices of the localized model are shown in Figure 4.17. The same two

slices of the conventionally localized model, artifact reduced by localization

and this example are distinctly different. This model shows no panel artifacts,

and is void of the local grade inconsistencies seen in the optimized model. This

artifact reduced model presents the smoothest appearance, most similar to the

Ordinary Kriged model in Figure 4.10.
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Figure 4.17: Artifact reduction by random panel assignment. Units are arbitrary
for this synthetic example.

Despite the smooth large scale features, at a small scale this model displays

at a pixelated texture similar to a simulated realization. Aside from the slight

visual issue the main drawback of this method is the spatial distribution of

grade throughout the domain. The highest grades of each panel scale distri-

bution are often assigned to a single area within the model where the highest

Ordinary kriged grades are located. This clusters all of the highest values in

a single area. It can be assumed the same issue exists for the lowest grades

within the model. In this example, this effect has caused the areas of high

grade to the north to grow and intensify while the areas to the south which

show high grade in both the conventional and optimized localization models

(Figures 4.13 and 4.15 respectively) are reduced to mid grade by the random

panel artifact reduction technique.

The artifact reduction techniques presented here are improvements upon

conventional localization. Both techniques effectively reduce the unattrac-
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tive discontinuities that occur at panel edges, but each comes at a cost. The

optimization process adds an additional post processing step and yields incon-

sistent grade in an unrealistic fashion. The random panel approach generates

a model with a pixelated appearance while compromising the spatial distribu-

tion of high and low grade values within the domain. Despite the drawbacks,

each of the methods shown provides good histogram reproduction. The mean

and variance for each of the models created is tabulated in Table 4.1 for com-

parison.

Table 4.1: Results of Panel Artifact Reduction

Model Mean Variance

Conditional Simulation 0.35 0.12
Localized model I 0.34 0.10
Localized model II* 0.35 0.13
Artifact Reduction - Optimization* 0.34 0.10
Artifact Reduction - Optimization 0.35 0.13
Artifact Reduction - Random Panels 0.36 0.13
Artifact Reduction - Random Panels* 0.34 0.11

* Denotes model created using random grade class sampling

It is clear from the table of results and plotted CDFs, that the localized

models provide good histogram reproduction but randomly sampling from

within grade classes can be considered best practice. Even with confidence in

histogram reproduction, local precision remains an issue. Localizing a panel

scale distribution and assigning SMU grades by a ranking scheme does not

guarantee local precision. This simply creates a spatial pattern that mimics

the model used for ranking. The issue is exaggerated by re-arranging SMUs

within a panel through optimization for artifact reduction. Artifact reduction

approaches presented here offer a visual improvement to the conventionally

localized model.

4.5 Conclusions

Localization is appealing. The benefit of histogram reproduction from a single

model is desirable. Application of artifact reduction techniques improve upon
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the results visually but highlight the issues of local precision. Questionable

local precision also suggests that a localized model is likely not conditioned to

data values present. Even so, localization provides an effective methodology

for reducing a probabilistic model of uncertainty to one model for situations

that may value histogram reproduction over local precision.

The pros and cons of localization should be carefully considered prior to

implementation in a practical setting. The simplicity of a single high resolution

model is undeniable, but it may not be reasonable. In most cases the limited

number of data present make deterministic models unrealistic for resource

evaluation and risk analysis.
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Chapter 5

Practical Implementation

5.1 Introduction

This chapter will focus on practical application of geostatistical modeling for

SMU uncertainty in the case of a large copper porphyry deposit. Models of

uncertainty will be constructed at the SMU scale to demonstrate the steps

involved and for comparison of results. Results from multiple models will be

contrasted at both a global and local scale along with resource calculations.

In this example MultiGaussian (MG) kriging, Sequential Gaussian Simulation

(SGS) and Uniform Conditioning (UC) will be used to create models of un-

certainty for resource evaluation. The goal of this study is to review each of

the three methods and apply recommendations made in a practical setting.

The data used for this study has been collected from the JA deposit in the

Highland Valley Porphyry system near Kamloops British Colombia and was

provided to the University of Alberta more than a decade ago for the mine

design project class. Like many porphyry systems, the ore in this deposit is

common along veins, fractures and faults. All of these features are vertically

continuous and preferentially oriented with a strike of Northeast - Southwest

(Aziumuth:135). The dataset includes both Copper and Molybdenum values.

For simplicity, only Copper will be modeled in this case study. It is assumed

that the same techniques can be adapted for modeling molybdenum but will

not be demonstrated here. Further information about the deposit, geologic

setting and history of exploration is available in Casselman et al. (1995).
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5.2 Data

The data provided for this case study consists of 10649 samples collected from

near vertical drillholes. A domain of 2100x1800x750 meters, with an origin at

34210 East 27025 North and 600 (m) Elevation for this practical demonstra-

tion. The locations of drillholes form a large elliptical area of interest with a

long axis striking Northwest-Southeast as seen in Figure 5.1.
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Figure 5.1: A two dimensional map showing the location of drill holes in the
domain. Drill holes are colored by the grade from the bottom sample of each drill
hole.

Similar to many porphyry systems this deposit contains a large amount

of low grade samples. Based on this observation it is assumed open pit min-

ing is an appropriate extraction method. The data have been averaged to

fifteen meter fixed length composites which is deemed an appropriate length

because it is a reasonable bench height. Original data was provided at three

meter intervals, therefore a single composite is the average five samples (in

most cases). From this point forward composited data will be used for all
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calculations, modeling and model checking.

Although the drillhole spacing is somewhat regular throughout the domain,

areas of inconsistent spacing exist and declustering is required. In this study,

a cell size equivalent to the drillhole spacing in sparsely sampled areas is ap-

plied, per the guidelines suggested by Rossi and Deutsch (2014). A cell size

of 50x50x50 meters is used and declustering weights are calculated. Applying

the declustering weights yields the declustered histogram in Figure 5.2.
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Figure 5.2: The declustered histogram of Copper grades present in the composite
data set.

The histogram in Figured 5.2 shows that the distribution of copper grades

is positively skewed with a declustered mean of 0.25 (naive mean of 0.26) and

a standard deviation of 0.22. This is considered the reference distribution that

is representative of the data that will be used for geostatistical modeling at

the point scale (the scale of the data).

For all models generated in this study, an SMU size of 15m x 15m x 15m

will be considered. As discussed in Chapter 2, the decision of SMU size is

dependent on many factors. A number of equipment and planning based

factors would ultimately influence this decision. This SMU size is considered

to be consistent with the composite length in the vertical direction and provides

reasonable resolution at the SMU scale. Additionally, SMUs could be grouped

to form panels of size 75m x 75m x 15m as necessary.
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5.3 Variography

The spatial relationship of the composited data is quantified by the variogram

in both original and Gaussian units. The original units variogram is required

for change of support and kriging in original units. The variogram in Gaussian

units is required for MG Kriging and SGS. For both cases, the variograms

are modeled in three directions: vertical, and two directions in the horizontal

plane. Directions of maximum and minimum continuity in the horizontal plane

are chosen at an Azimuth of 135 and 45 degrees respectively.

Due to poorly behaved and difficult to model experimental variograms

in both horizontal directions the pairwise relative variogram was used here.

The pairwise relative experimental variograms are standardized and modeled

to a sill of 0.70 (sill determined using the prsill program) as seen in Fig-

ure 5.3. More information about the pairwise relative variogram can be found

in Babakhani and Deutsch (2013).

Figure 5.3: The pairwise relative variograms calculated and fit with three spherical
structures to reach a sill of 0.70.

Table 5.1: Parameters of Variogram Model in Original Units.

Type of Structure Contribution
Max

Range (m)
Min

Range (m)
Vert

Range (m)

Nugget Effect 0.067
Spherical 0.156 175.2 65.8 41.7
Spherical 0.222 390.3 461.4 684.0
Spherical 0.254 2611.5 464.6 727.7

An azimuth of 135 degrees is considered for the maximum direction of continuity,
and 45 degrees azimuth for the minimum direction of continuity with 0 degrees for
both plunge and dip.
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Variograms for the three directions described are plotted in Figure 5.3

are modeled with automated fitting software using three spherical structures

defined in Table 5.1. This is the three dimensional variogram model that will

be scaled to the correct variance of the univariate distribution for change of

support and kriging in original units. Geostatistical modeling in Gaussian

space requires an additional set of variograms calculated using the normal

scores of composited data. Experimental variograms are calculated and fit

with a three dimensional model as shown in Figure 5.4.

Figure 5.4: Normal score variograms for the the composited data in Gaussian
units fit with three spherical structures and a nugget effect of 0.132.

Table 5.2: Parameters of Variogram Model in Gaussian Units

Type of Structure Contribution
Max

Range (m)
Min

Range (m)
Vert

Range (m)

Nugget Effect 0.132
Spherical 0.396 69.1 21.1 132.6
Spherical 0.287 475.0 93.9 2060.8
Spherical 0.186 476.7 271.6 2378.3

An azimuth of 135 degrees is considered for the maximum direction of continuity,
and 45 degrees azimuth for the minimum direction of continuity with 0 degrees for
both plunge and dip.

The variogram model, in Gaussian units, is defined by three structures in

Table 5.2. This will be used for both MG Kriging and SGS.

In both sets of variograms the extensive vertical continuity of the porphyry

system is made clear. This is obvious in the vertical variogram which does not

reach the sill in either the Pairwise Relative or Gaussian variogram model. This

observation, paired with the known geologic setting suggests an areal trend is

present and well defined by the data. The presence of an areal trend makes
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this domain non-stationary and may warrant subdividing the data or explicitly

modeling a trend. Ideally, rock codes and in-depth geologic observations could

provide more information to subset the data to create a series of smaller,

more staionary domains. In this example, due to the information available

and methodology focus of this case study, the deposit will be modeled as a

single domain. The non-stationarity of the domain should be considered when

reviewing small fluctuations in statistical results.

In addition to the non-stationarity of the domain the use of two different

variogram models may contribute to variation in the results. Normal scores

variograms are typically better behaved than variograms in original units, but

in this case the pairwise relative variogram performs better and provides a

more continuous variogram model. In this case, the Normal scores of the

composited data are used to construct the variogram in Gaussian units. An

alternative that may yield a more continuous variogram would be to translate

the experimental pairwise relative variogram to Gaussian space. This process

was not pursued at the time of modeling.

5.4 Geostatistical Modeling

Three geostatistical techniques for modeling uncertainty will be applied here

for resource evaluation. These include, MultiGaussian Kriging, Sequential

Gaussian Simulation and Uniform Conditioning. Indicator Kriging will not be

applied due to the complexity and time consuming requirements of binning,

variogram modeling, and order relations corrections required to achieve the

correct global distribution of estimates. Prior to modeling the correct reference

distribution at the SMU scale is established.

5.4.1 The SMU Scale Reference Distribution

It is known from the information effect that greater precision and local detail

will be available at the time of mining. It is also known that the scale of

relevance for mining is larger than the pseudo point scale of the drillholes. For

this reason, geostatical modeling takes place at the SMU scale. To provide a
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reference histogram at the SMU scale, the declustered histogram of composite

data must be adjusted for variance reduction. This is due to the support effect

which describes the dampening of high and low values within each SMU block

for an overall decrease in variance. The most robust method available for this

task is the Discrete Gaussian Model (discussed in Chapter 3). The Pairwise

Relative Variogram model is re-standardized to a sill of 1 and used to scale the

distribution in Figure 5.2 appropriately. The resulting histogram is displayed

in Figure 5.5.
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Figure 5.5: The distribution of declustered composite data, scaled to the SMU
volume to be used as a reference histogram for model validation.

After upscaling to the SMU volume, the reference histogram gives a mean

of 0.25 (%Cu) and standard deviation of 0.20 (variance of 0.04). These are

the statistics that will be targeted for validating the global distribution of

estimates generated via geostatistical modeling.

5.4.2 MultiGaussian Kriging

The first method considered, MultiGaussian Kriging, is performed in accor-

dance with the description in Chapter 2. Kriging parameters include using a

search ellipse of 500x300x600 meters oriented with the longest axis in the ver-

tical direction and the longer of the two horizontal axes at an Azimuth of 135

degrees corresponding to the maximum direction of continuity. A minimum of
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four and a maximum of forty data are considered for each estimate. Normal

scores of the composited data are kriged over the entire domain, at the point

scale, by Simple Kriging with a stationary mean of zero.

The local distributions defined by a conditional mean and variance at each

location must be back transformed from Gaussian units to original units. Be-

fore post processing, the grid of kriged estimates is clipped. Due to the North-

west striking elliptical shape of this deposit a large amount of empty space

exists in the Northeast and Southwest quadrants of the domain. Estimates far

from data will be generated equal to the mean. This large number of estimated

locations can slow down post processing and generate misleading results once

back transformed to original units since there are no conditioning data. For

this reason, all kriged estimates more than 300 meters from a drillhole are set

to a null value.

Back transformation and volume variance correction are handled simulta-

neously in the PostMG Loc program developed (see Software Appendix). Back

transformation is performed using the look up table created during the initial

normal score transform of the composited data. One hundred quantiles of each

local distribution are back transformed.

Change of support is applied using the Affine correction. The Affine Cor-

rection using a local variance reduction factor is the best option despite the

permanence of shape assumption due to the complexity and CPU cost of ap-

plying the DGM at each location. The local variance correction factor is

calculated using high resolution simulations for the entire domain similar to

the procedure presented as an example in Chapter 3. The distribution of

calculated local correction values is shown in Figure 5.6.
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Figure 5.6: The distribution of local correction values calculated using the method-
ology presented in Chapter 3. For reference, the global correction factor is 0.845
calculated using gammabar

The mean value of this distribution is lower than the global correction factor

of 0.84 (calculated using gammabar). This difference in the local and global

correction factor can be attributed to the presence of conditioning data as

noted in Chapter 3. The spatial configuration of these results is portrayed in

Figure 5.7 which shows slice 10 from the gridded set of local correction values.
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Figure 5.7: Slice 10 of the gridded local correction factor values shows high values
in regions of sparse data and lower values proximal to conditioning data
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The plotted local correction factor in Figure 5.7 shows near zero values at data

locations which increase and approach the global correction factor in areas far

from conditioning data.

The clipped and back transformed SMU scale results are exported in the

common format described in Chapter 2 for resource evaluation to follow. The

estimates calculated are portrayed in the histogram seen in Figure 5.8.
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Figure 5.8: The distribution of estimates at the SMU scale after back transforma-
tion and variance correction. This histogram includes one hundred quantiles from
each local conditional distribution.

The global distribution of estimates from MultiGaussian Kriging closely

reproduces the original histogram scaled to an SMU volume in Figure 5.5. To

confirm that the model is reasonable a plot of the expected value of each local

distribution is shown in Figure 5.9.
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Figure 5.9: Slice number 10 from the defined grid showing the expected value from
each local distribution estimated by MultiGaussian Kriging after back transforma-
tion and change of support.

The plot of expected values in Figure 5.9 shows a similar spatial distribution

of high and low grade compared to original data in Figure 5.1. This plot

presents an overly smooth representation of the grades due to the expected

value calculation. A single realization from Sequential Gaussian Simulation

will present a more realistic view of the variability that is present throughout

the domain.

5.4.3 Conditional Simulation

Sequential Gaussian Simulation is used to generate a second model of uncer-

tainty for comparison with the model generated via MultiGaussian Kriging.

The same set of normal scored data values and Gaussian variograms are used

for simulation as were used in Multi Gaussian Kriging. Parameters for sim-

ulation include the same search radius and number of data per estimate for

consistency.

Simulation is performed at the data scale. This can be inconvenient over

multiple realizations due to time, computational expense, and management

of large files. To mitigate these issues realizations are generated at a 5x5x15

meter grid resolution. This provides an adequate discretization to average the
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results to the larger 15x15x15m SMU size. Despite the adjustment in grid

definition, this remains a large number of locations. To further reduce the

number of cells requiring an estimate only grid cells within the area of interest

will be given a simulated value. Only cells within 300 meters of a drill hole

will be estimated. All other cells will be given a null value for all realizations.

One hundred realizations are generated at the grid spacing described within

the area of interest. Change of support is accomplished by block averaging

the composite scale simulated values within each SMU volume. This results

in one hundred values from each local SMU distribution, equivalent to the one

hundred quantiles calculated by MultiGaussian Kriging. The SMU scale CDF

from each realization is checked against the reference distribution of composites

in Figure 5.10.
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Figure 5.10: Each black CDF represents a single realization and the overlaid red
CDF represents the original distribution of composites for comparison.

Visualizing each realization is not practical. For this reason one slice from a

randomly chosen realization is given as an example. A single slice from real-

ization twenty-five, at the SMU scale, is displayed in Figure 5.11. Realization

twenty-five was chosen arbitrarily.
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Figure 5.11: Slice ten from realization twenty-five at the SMU scale.

The plot displayed in Figure 5.11 shows more realistic variability com-

pared to the smooth map of expected values from MultiGaussian kriging in

Figure 5.9. It is important to note that the grade values displayed in this

plot are only from one realization, out of one hundred. This is not an ex-

pected value or best estimate but instead shows a realistic spatial distribution

of possible values. One benefit of simulation is that the spatial relationship

can also be verified by checking the variogram from each realization, shown in

Figure 5.12.
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Figure 5.12: The variogram of each realization is plotted in gray for all three
directions. The experimental variogram calculated from origianl data is plotted by
red dots and the variogram models fit to points are the red lines for comparison.
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Simulated realizations permit reasonable variogram reproduction. By check-

ing the global histogram the practitioner can be assured the correct distribu-

tion is reproduced while variogram reproduction confirms this grade is dis-

tributed correctly throughout the domain. The results of conditional simula-

tion suggest the model of uncertainty is representative for this domain, and

will be contrasted with results from both MultiGaussian Kriging and Uniform

Conditioning later.

5.4.4 Uniform Conditioning

Uniform Conditioning is different from the other geostatistical techniques ap-

plied above. The normal score transformation is only needed to fit the DGM at

the SMU and Panel scale for local resources; all kriging and average variogram

calculations use the variogram in original units. To begin, kriging takes places

over a panel scale grid defined by 75x75x15 meter panels. Kriging parame-

ters include a larger search radius of 2000x500x700 meters to accomodate the

longer range of the pairwise relative variogram model in original units. This

elliptical search radius is oriented with the longest axis in the horizontal plane

at an Azimuth of 135 degree and the shortest also in the horizontal plane at

an Aziumuth of 45 degrees. Panels are discretized for block kriging to account

for the panel scale volume support, the resulting distribution of estimates is

seen in Figure 5.13.
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Figure 5.13: The distribution of panel scale estimates (after clipping to the area
of interest) used for Uniform Conditioning.

The distribution of panel scale estimates shows that that variability has

been reduced significantly to standard deviation of 0.14. This is due to both

the increase in scale as well as the smoothing effect of kriging with a large

search radius. The kriged panel scale estimates are used as the input for

Uniform Conditioning. Additional inputs for Uniform Conditioning include

the variance of the kriged panel scale estimates and the variance of the SMU

distribution which can be inferred using the average variogram. The gammabar

program (Deutsch and Journel, 1997) calculates the SMU scale variance of

0.0395 while the panel scale variance is calculated directly from the kriged

estimates for a value of 0.0196. This is a 18.4% (SMU) and 59.5% (panel)

reduction compared to the original distribution of composited grades. Next,

the Hermite polynomial coefficients are fit to the distribution using the pre uc

program (Neufeld, 2005) as the last preparation for Uniform Conditioning.

The GSLIB style program (UC Loc) is used to perform the Uniform Con-

ditioning. This is an newly updated version of the Uniform Conditioning

program developed by Neufeld (2005). The update includes an additional ex-

port file that tabulates a defined number of quantiles per panel distribution.

Recall that the distributions calculated are at the SMU scale, but portrayed on

a panel grid. The program UC reorder has been developed, and is used here,
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to re-organize the exported quantiles into the common format at an SMU grid

definition. More information about software alterations is available in the Ap-

pendix. The results from Uniform Conditioning are displayed in Figure 5.14.
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Figure 5.14: The distribution of one hundred quantiles for each local distribution
for the SMU grid.

The global distribution of results shown above closely reproduces the target

mean and variance at the SMU scale. Although the SMU scale distribution

suggests that this model is appropriate for mine planning, a visual inspection

of Figure 5.15 shows that even at an SMU grid it is obvious that precision is

limited to the panel scale, but only shows resolution at the panel scale.
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Figure 5.15: This plot shows the expected value of each local SMU distribution
calculated by Uniform Conditioning. This map is plotted on an SMU grid.

The plot in Figure 5.15 shows the expected value for each local SMU dis-

tribution. The expected value calculation generates a smoothed map and

distribution of values. Rather than calculate the expected value of each dis-

tribution, localization is an option. Despite the advertized benefits of a higher

resolution model via localization, the issues of conditioning and local precision

within each panel are problematic. This suggests the results are best utilized

at SMU support with panel resolution as shown in Figure 5.15.

5.5 Results and Analysis

In this case study, each modeling technique has generated a distribution of

uncertainty at the SMU scale for each location within the area of interest. The

standard approach to model checking is global histogram reproduction, visual

inspection, and variogram reproduction (in the case of simulation). Global

and local results from each model are contrasted here in regards to resource

evaluation. First an overview of the results from each model is given, followed

by a look at local results for select locations and finally the overall resource is

evaluated for each model at the global scale.
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5.5.1 Global Scale

The global results of each model are reported at the SMU scale. To be con-

sistent, these results are compared to the original distribution of composites

at SMU volume support in Figure 5.5. The mean and variance of each model,

along with the SMU scale original data are tabulated in Table 5.3.

Table 5.3: Global Results of Geostatistical Modeling at the SMU Scale

Description Global Mean (%Cu) Global Variance

Upscaled Original Data 0.253 0.0400
MultiGaussian Kriging 0.225 0.0289
Conditional Simulation 0.222 0.0408
Uniform Conditioning 0.199 0.0396

The mean and variance reported for each model are similar. Slight fluctu-

ations in these statistics can be attributed to multiple factors. The reduction

in global mean can be attributed to the large number of estimates at the bor-

ders of the model. Additionally, the vertical trend that exists in this system

creates a non-stationary domain which can lead to inconsistencies. Estimates

from MultiGaussian Kriging are clipped at an SMU scale while panel estimates

are clipped at a larger scale prior to Uniform Conditioning, this has the poten-

tial to influence results by creating a slightly different area of interest for each

model. Despite the differences, global scale reproduction of first and second

order statistics suggest that all three of the models effectively represent the

deposit.

5.6 Local Scale

Comparing and contrasting each local distribution across an entire domain

between all three models is not practical. It can be assumed some variation

between the three models exists on a local scale. To summarize, the CDF from

three SMUs within each model have been selected. A high value SMU with

the grid coordinates of: x= 87 y= 65 and z= 21; a medium value SMU with

coordinates: x= 63, y= 64 and z= 12 , and a low value SMU at x= 74, y= 63

and z= 11, are displayed in Figure 5.16.

83



%Cu %Cu %Cu

Figure 5.16: Three local conditional distributions from the same three locations
in each model are plotted here. Accompanying statistics are available in Table 5.6,
Table 5.5, and Table 5.4.

Local distributions selected from each model are constructed from the one

hundred quantiles or simulated values modeled at that location. The similar

shape and variance displayed for each local distribution across all three models

suggests that local scale results are consistent. The low value location displays

a small variance for each, while the medium and high value locations show

higher variance. First and second order statistics along with grade and tonnage

above a specified cutoff is given for each CDF in Table 5.6, Table 5.5, and

Table 5.4.

Table 5.4: Results for High Value Location

Above Cutoff 0.6 % Cu
Model Mean Variance Mean (%Cu) Tons Metal (Tons)

SGS 0.892 0.0231 0.899 8930 8030
MG 1.00 0.0282 1.00 9110 9110
UC 0.798 0.159 0.992 5920 5880

Table 5.5: Results for Mid Value Location

Above Cutoff 0.4 % Cu
Model Mean Variance Mean (%Cu) Tons Metal (Tons)

SGS 0.294 0.0213 0.524 1820 955
MG 0.26 0.0199 0.516 1460 752
UC 0.222 0.0225 0.53 1090 579
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Table 5.6: Results for Low Value Location

Above Cutoff 0.1 % Cu
Model Type Mean Variance Mean (%Cu) Tons Metal (Tons)

SGS 0.0396 0.000769 0.116 365 42.3
MG 0.038 0.000817 0.134 365 48.9
UC 0.0506 0.00287 0.158 1280 201

The conditional mean and variance values tabulated in Table 5.6, Table 5.5,

and Table 5.4 show that some variation in the results is present. Results are

similar for both MultiGaussian Kriging and Sequential Gaussian Simulation.

This is expected as these two methods are the most similar. Uniform Con-

ditioning presents smooth CDFs which give a higher variance, particularly in

the high value SMU selected. The difference in these results may be due to

proximity to conditioning which Uniform Conditioning does not account for.

Other factors may also contribute to these differences, including: tail extrap-

olation, Gaussian transformation and random number generation (in the case

of simulation).

5.7 Resource Evaluation

Quantifying the total tons and grade of material present is an important step

in long term planning for a deposit. Calculating these metrics based on an

estimated model the process is simple. A cutoff grade, determined based on

overhead cost and market value of the ore, is used to define which SMUs are ore

and waste based on a single value at each location. From the SMUs evaluated

as ore a total tonnage and average grade above cutoff can be easily calculated.

In the presence of uncertainty, this methodology must be adapted.

In this step the value of multiple realizations is made clear. When evaluat-

ing the resource in a given deposit using multiple realizations the uncertainty

can be transferred through to the final metrics. When only local uncertainty is

present, in the case of both MultiGaussian Kriging and Uniform Conditioning,

the expected value must calculated prior to grade and tonnage calculations.

This is demonstrated for each of the models created. Grade - tonnage curves

for each model in Figure 5.17 show the change in tons and average grade above
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a series of cutoffs specified on the horizontal axis. Tonnage estimates presented

here are calculated based on a specific gravity of 2.7 (tons/m3).
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Figure 5.17: Grade tonnage curves are plotted from each model. Each realization
of the simulated model is plotted separately with the average plotted in red. For
MultiGaussian Kriging and Uniform Conditioning only the expected value is plotted.

Statistics accompanying each of the plotted grade tonnage curves are available

in Table 5.7, Table 5.8 and Table 5.9 for the simulated realizations, expected

value of MultiGaussian Kriging and expected value from Uniform Condition-

ing.

Table 5.7: Resource Evaluation of Simulated Model

Above Cutoff
Type Cutoff % Total Tons Mean (%Cu) Tons Metal (Tons)

p10 0 100 0.21 2.66E+09 5.59E+08
0.1 74 0.26 1.97E+09 5.12E+08
0.2 42 0.35 1.12E+09 3.91E+08
0.3 22 0.44 5.85E+08 2.58E+08
0.4 11 0.53 2.93E+08 1.55E+08

Expected Value 0 100 0.22 2.66E+09 5.85E+08
0.1 77 0.27 2.05E+09 5.53E+08
0.2 45 0.36 1.20E+09 4.31E+08
0.3 25 0.45 6.65E+08 2.99E+08
0.4 13 0.54 3.46E+08 1.87E+08

P90 0 1.00 0.23 2.66E+09 6.12E+08
0.1 79 0.28 2.10E+09 5.89E+08
0.2 48 0.37 1.28E+09 4.73E+08
0.3 27 0.46 7.19E+08 3.31E+08
0.4 14 0.56 3.73E+08 2.09E+08

The one hundred realizations of the simulated model yield one hundred equiprob-
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able grade tonnage curves. This provides valuable uncertainty for decision

making based on the tons and grade calculated. There are multiple ways to

interpret the information from the set of realizations. In this example the P10

and P90 quantiles have been evaluated along with the expected value. This

provides information for planning in regards to a reasonable best, worst and

average of the subsurface resource present.

Table 5.8: Resource Evaluation of MutiGaussian Kriging

Above Cutoff
Cutoff % Total Tons Mean (%Cu) Tons Metal (Tons)

0 1 0.23 2.68E+09 6.14E+08
0.1 0.97 0.23 2.60E+09 6.08E+08
0.2 0.63 0.27 1.67E+09 4.56E+08
0.3 0.15 0.40 3.94E+08 1.58E+08
0.4 0.059 0.49 1.58E+08 7.70E+07
0.5 0.018 0.59 4.83E+07 2.83E+07

Table 5.9: Resource Evaluation of Uniform Conditioning

Above Cutoff
Cutoff % Total Tons Mean (%Cu) Tons Metal (Tons)

0 1 0.20 2.69E+09 5.32E+08
0.1 0.61 0.30 1.63E+09 4.83E+08
0.2 0.36 0.40 9.57E+08 3.84E+08
0.3 0.21 0.51 5.66E+08 2.88E+08
0.4 0.13 0.61 3.50E+08 2.14E+08
0.5 0.081 0.71 2.16E+08 1.54E+08

Results from MultiGaussian Kriging and Uniform conditioning are calcu-

lated at each location based on the portion of a local distribution above the

cutoff grade being considered. Although easy to calculate, there is an obvious

lack of information in comparison to the values calculated from the set of re-

alizations. The results of global resource evaluation vary, especially at higher

cutoff grades. Uniform Conditioning presents the highest average grades with

lower tonnage estimates while Simulation Presents the lowest grades even when

considering the expected value. The differences in these results are large. Pos-

sible reasons for these differences are the non-stationary nature of this domain

and the use of two different variogram models. Even so, it is difficult to de-
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termine which model is correct until mining takes place and reconciliation can

be performed. It is undeniable that Simulation provides much more informa-

tion that either MultiGaussian Kriging or Uniform Conditioning by providing

quantified uncertainty rather than a single estimate for resource evaluation.

5.8 Conclusions

Geostatistical modeling for long term planning and resource evaluation is chal-

lenging. The case study presented here demonstrates the practical implemen-

tation of three available techniques for modeling uncertainty. All three tech-

niques take advantage of the robust Gaussian distribution and share similar

assumptions of stationarity. The differences in these models become apparent

in the final steps of resource evaluation. The significant differences present,

especially at higher cutoff grades, can be attributed to differences in methodol-

ogy and non-stationarity. Careful separation of geologic domains for separate

modeling could improve upon the difference in results.

MultiGaussian Kriging and Uniform Conditioning are faster and simpler

than Conditional Simulation, but the advantages of multiple realizations are

many. The spatial relationship between simulated values for each realization

can be checked through variogram reproduction. The ability to block aver-

age point scale realizations to the SMU scale avoids the pitfalls of analytical

change of support methods and generates the correct histogram at both scales

of interest. These factors instill confidence in the model of uncertainty by

providing additional methods for model checking and validation.

The findings of this case study suggest that all three methods can gener-

ate the correct distribution of estimates and local uncertainty. Only through

multiple realizations can uncertainty be transferred to the decision making

process. The local uncertainty generated through MultiGaussian Kriging and

Uniform Conditioning can be queried for information regarding a specific lo-

cation, but does not provide a measure of uncertainty for any larger volume.

Only through simulation can uncertainty be quantified over the entire domain.

This allows for resource evaluation on each realization which can then be used
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to accurately calculate the best, worst and average expectations for the sub-

surface deposit. This is valuable for economic decision making, determining

pit limits, and even in long term mine planning.
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Chapter 6

Conclusion

Assessing uncertainty in a resource model is an important task. Often the data

available for geostatistical modeling constitute less than one-trillionth of the

total volume of the deposit. This small amount of data makes deterministic

modeling impractical and motivates the quantification of uncertainty through

geostatistical modeling. Long range resource modeling takes places at the

scale of the selective mining unit. This larger volume than the data scale is

appropriate for resource evaluation. Multiple methods have been presented

here for quantifying uncertainty at the SMU scale along with associated post

processing techniques. The benefits and downfalls of each approach have been

highlighted and a number of practical developments have been made in this

thesis.

6.1 Topics Covered and Contributions

The issues of conditional bias and histogram smoothing that result from esti-

mation techniques have been discussed. These downfalls of estimation demon-

strate the need for a measure of uncertainty in a geostatistical model. An

overview of four common techniques for quantifying uncertainty at the SMU

scale are presented in Chapter 2. These modeling techniques are: MultiGaus-

sian Kriging, Sequential Gaussian Simulation, Multiple Indicator Kriging and

Uniform Conditioning. The benefits and challenges of each technique are sum-

marized considering complexity and computational expense. While Indicator

Kriging can be regarded as the most complex; simulation is the most compu-
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tationally expensive. Despite the time and computational requirements, the

findings of this research suggest that the benefits of multiple realizations out

weigh the cost of this technique simulation; no other technique provides joint

uncertainty and freedom from location dependent change of support parame-

ters.

The review of the change of support techniques including analytical meth-

ods, the Discrete Gaussian Model and numerical block averaging is given in

Chapter 3. Analytical methods such as the Affine and Indirect Lognormal

Corrections rely heavily on a globally calculated variance correction factor.

Inquiry into the location dependence of this parameter using a simulation test

reveals that it is, in fact, strongly location dependent. The ratio of the block

and point scale variances is dependent on proximity and value of conditioning

data. Unfortunately, a closed form analytical solution for calculating the local

correction factor is impractical. An approximation was proposed using known

factors such as the kriging variance. Similarly, the embedded change of sup-

port technique in Uniform Conditioning is affected by conditioning data. It is

demonstrated through another simulation test and inference of the theoretical

correlation coefficient at panel and SMU scales, that the change of support

parameters of Uniform Conditioning are also location dependent. The in-

consistencies in both of these techniques suggest that the robust numerical

approach of block averaging simulated realizations is the most effective and

reliable method available. This further supports the case for simulation as

best practice.

Managing uncertainty represented by multiple realizations can be challeng-

ing. One alternative is localization. This process reduces SMU uncertainty to

a single value while avoiding the pitfalls of estimation. Although there are no

issues of histogram smoothing, localization generates a resource model with

artifacts poor local precision and unclear conditioning to available drill hole

data. Panel edge artifacts are an unattractive side effect of localization. Two

techniques for minimizing these artifacts are presented in Chapter 4. A flexible

localization methodology has been developed to extend this process and arti-

fact reduction techniques, to each of the four modeling techniques presented.
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Despite the improved flexibility and developments towards artifact reduction

the issues of local precision and conditioning make localization of questionable

value for long term planning.

The final chapter of this thesis includes a practical demonstration of three

geostatistical modeling techniques using data collected from a well established

porphyry deposit. This section showcases MultiGaussian Kriging, Sequential

Guassian Simulation and Uniform Conditioning. This provides summary and

overview of implementation details for each method in a realistic setting to

quantify the resource. Through modeling and validation processes, the three

geostatistical techniques generate consistent results at both the global and

local scale. In the final stage of resource classification the benefits of joint

uncertainty are made clear. The ability to transfer information through the

resource evaluation process for a measure of uncertainty in the final results

demonstrates the value of multiple realizations. This information is beneficial

in an economic feasibility, mine planning or risk assessment setting supporting

simulation as best practice.

Through each of these topics addressed the goals put forth in Chapter 1

have been met. The status quo of a single model has been challenged through

careful review of techniques for modeling uncertainty which avoid the need

to choose between over smoothing or conditional bias of estimates. Under-

standing of the local dependence of change of support parameters has been

improved for analytical methods as well as for the embedded technique within

Uniform Conditioning. In addition, a suggested methodology for approxima-

tion of the local correction factor has been put forth. Localization has been

addressed through an explanation of the methodology and a synthetic example

to highlight the benefits and issues surrounding this new approach to generat-

ing a single model. Artifact reduction of localized models is now a possibility

through either optimization or random panel definition as outlined in Chapter

4. Lastly, a case study has demonstrated the modeling process for three meth-

ods highlighting the benefits of Sequential Gaussian Simulation paired with

robust change of support by block averaging. The joint uncertainty portrayed

by multiple realizations provides valuable information in resource evaluation
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as shown by the summarized P10, P90 and Expected value measures which

can lead to better informed decision making than would be possible using a

single model.

6.2 Future Work

Through the investigation of available methods for accurately quantifying SMU

uncertainty some contributions have been made yet, future work remains.

Specifically, topics including the local correction factor, artifact reduction in

localization and tools for mine planning over multiple realizations require fur-

ther attention.

The local variance correction factor, implemented using the Affine Correc-

tion, is an improvement upon the assumption of a global stationary parameter

in variance reduction. For a single SMU the local correction factor is the ratio

of the block variance and the average point variance of that SMU. The large

difference between this local correction factor and the global correction fac-

tor is not completely understood. The global correction factor is theoretically

correct for reducing the global distribution; but its relationship to the local

correction necessitates further work.

Artifact reduction in localization remains a topic in need of further devel-

opment. Improvements have been made in artifact reduction of panel edge

effects. Both methods presented effectively reduce artifacts for a visually im-

proved model but each method yields a side effect. The local clustering effect

of optimization is unrealistic and the concentration of high and low grades in

specific areas caused by random panel localization is undesirable. There may

be way to reduce panel artifacts while honoring larger scale trends without

disrupting the spatial distribution of estimated values.

A final issue that deserves more attention is the implementation of multi-

ple realizations in mine planning. The use of loss functions for optimization

over multiple realizations has been explored by some, including: Schofield and

Rolley (1997) but are not widely implemented in practice. The benefits of

multiple realizations for quantifying uncertainty are clear but the tools of how
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to fully utilize the set of in a mining context need further development in

software and practice.

6.3 Recommendations

The goals of presentation, discussion and implementation of methods for quan-

tifying SMU uncertainty have been accomplished here. Additionally, change

of support techniques have been analyzed and implemented with respect to

local variation and conditioning data. The improved flexibility of localization

paired with artifact reduction provides a framework for generating a single

model when required. Despite the improvements in local change of support,

and flexible localization, the findings of this thesis support conditional simu-

lation, paired with block averaging for change of support, as best practice in

resource modeling to quantify uncertainty for improved resource evaluation.
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Chapter 7

Appendix - Software

7.1 Introduction

A number of GSLIB style software programs have been updated and devel-

oped to support the research presented in this thesis. The conventions used

and software developed built upon the work of others including: Deutsch and

Journel (1997), Lyster and Deutsch (2005), Neufeld (2005), and Boisvert and

Deutsch (2012). This appendix provides a description of the purpose, method-

ology and parameters required for each of the programs developed to assist in

generating models of SMU uncertainty.

7.2 Updated Postprocessing Programs

To generate results in the common format described in chapter 2, alterations

to postprocessing programs for Uniform Conditioning, MultiGaussian Kriging,

and Indicator Kriging were necessary. The required postprocessing for each

method varies but the goal is to generate results at the SMU scale ordered

in the same fashion by grid location. As an example, consider the small grid

of 4 SMUs and a distribution discretized by one hundred quantiles for each

location. The first quantile is given for each SMU in the grid by standard

GSLIB convention, followed by the second quantile value for each grid location

etc, until one hundred quantiles have been accounted for. This file is formatted

similar to one hundred realizations for the a same grid. An example in this

format is given in Figure 7.1 using descriptive labels where quantile values

ought to be.
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1 local distributions

2 1

3 quantile values

4 SMU 1-quantile 1

5 SMU 2-quantile 1

6 SMU 3-quantile 1

7 SMU 4-quantile 1

8 SMU 1-quantile 2

9 SMU 2-quantile 2

10 SMU 3-quantiel 3

11 SMU 4-quantile 4

12 .

13 .

14 .

15 SMU 1-quantile 100

16 SMU 2-quantile 100

17 SMU 3-quantile 100

18 SMU 4-quantile 100

Figure 7.1: A schematic example of the common format for a small grid of four
SMUs and local distributions discretized by one hundred quantiles.

The above example demonstrates how the results of each modeling tech-

nique can be exported through the postprocessing programs created. This

format can be used as the input for localization or another appropriate trans-

fer function for a model of local uncertainty.

7.2.1 Uniform Conditioning

Results from Uniform Conditioning are generated at SMU scale volume sup-

port over a Panel grid. This requires post processing to reorganize results

into the common format. Prior to performing Uniform Conditioning, Kriging

at the panel scale is required (Recomended GSLIB software: kt3dn (Deutsch

and Deutsch, 2012)) followed by calculation of Hermite Polynomial coefficients

using pre uc (Neufeld, 2005). The output from each of these is required for

Uniform Conditioning. The UC program developed by Neufeld (2005) has been

updated to include an additional export file that contains a specified number of

quantiles per panel distribution. The parameter file for the updated program,

called UC Loc is given below.

The SMU scale output file from UC Loc must be re-formatted and ordered

properly prior to input for Localization. A small post-processing utility

program, UC reorder, is provided for this purpose. Input parameters required

include the grid definition for both panel and SMU scales, the number of
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1 Parameters for UC

2 *****************

3
4 START OF PARAMETERS:

5 pre_uc.out -file with the anamorphosis coefficients

6 2 - column with the coefficients

7 0.00 4.32 -z minimum and maximum (from point data)

8 0 -type of estimate: 0 = Z, 1 = Y

9 kt3d.out -file with kriged estimate

10 1 - column with estimate

11 0.0 1.0e21 - trimming limits

12 0.1 1.0 0.1 -minimum cutoff , maximum cutoff and increment

13 1 -uc type: 0= hermite polynomials , 1= integral

14 uc.out -file for output

15 0 -output file format: 0 Geo -EAS , 1=CSV

16 uc_loc.out -file for output to localize

17 200 -number of quantiles

Figure 7.2: Input paramters for UC Loc

.

quantiles used and trimming limits.

1 Parameters for reorder

2 *********************

3
4 START OF PARAMETERS:

5 uc_loc.out -file with panel distributions for localizing

6 1 - column for distribution by quantile

7 -1.0 1.0e21 - trimming limits

8 200 - number of quantiles per panel

9 160 5225.5 50.0 -panel size: nx,xmn ,xsiz

10 180 3625.5 50.0 - ny,ymn ,ysiz

11 1 0.0 1.0 - nz,zmn ,zsiz

12 uc_reorder.out -file for output

13 80 5205.0 10.0 -SMU Output size: nx,xmn ,xsiz

14 90 3605.0 10.0 - ny ,ymn ,ysiz

15 1 0.0 1.0 - nz ,zmn ,zsiz

Figure 7.3: Input parameters for UC reorder

The output file, UC reorder.out, contains the results from Uniform condi-

tioning reorganized into the common format for use in localization or further

post processing.

7.2.2 Indicator Kriging

Standard Postprocessing of indicator kriging results accomplishes back trans-

formation from to original units while correcting order relations. This process

is well established and has been made widely available by Deutsch and Journel

(1997). Updates to this program include an additional input file for a local

variance correction factor and an additional output option for export in the
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common format. No additional reorganization is required.

1 Parameters for POSTIK

2 *********************

3 START OF PARAMETERS:

4 ik3d.out -file with IK3D output (continuous)

5 postik.out -file for output

6 1 0.25 -output option , output parameter

7 3 -number of thresholds

8 0.520 0.2350 1.2290 -the thresholds

9 2 -volume support ?(0=none ,1= global ,2= local)

10 2 - type? (1 = affine , 2 = IL)

11 0.65 - global "f" for vvc option 1

12 flocal.out - gridded local "f" for vvc option 2

13 data.dat -file with global distribution

14 3 0 -1.0 1.0e21 - ivr , iwt , tmin , tmax

15 0.0 11.2 -minimum and maximum Z value

16 3 0.35 -lower tail: option , parameter

17 3 0.35 -middle : option , parameter

18 3 0.35 -upper tail: option , parameter

19 200 -maximum discretization

20 1 -localizing option 1-yes , 0-no

21 IKloc.out - output file , quantiles for localizing

22
23 option 1 = E-type

24 2 = probability and mean above threshold(par)

25 3 = Z percentile corresponding to (par)

26 4 = conditional variance

Figure 7.4: Input parameters for PostIK Loc

The updated program called PostIK Loc requires only a few additional

input parameters: the number of quantiles per local distribution, the gridded

file containing the local correction factor and options for type of variance

correction as well as the additional common format output. The additional

output file is generated using the common format for localization or further

postprocessing.

7.2.3 MutiGaussian Kriging

Kriging at the point scale, in Gaussian units, requires post processing for back

transformation and change of support. Developed by Lyster and Deutsch

(2005) the Post MG program back transforms the conditional mean and vari-

ance to export specified quantiles from each local distribution along with the

conditional mean and variance in original units. This program has been up-

dated to include volume variance correction and export an additional common

format file.
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1 Parameters for POSTMG

2 *********************

3 START OF PARAMETERS:

4 kt3d_ns.out -file with kriged NS mean and variance

5 1 2 -columns with NS mean and variance

6 PostMG.out -file for output

7 nscore.trn -file with input transformation table

8 15 -probability to be in +/-XX% of mean

9 5 -number of quantiles to keep

10 0.05 0.10 0.50 0.90 0.95 -the probability values

11 0

12 locMG.out -option for localization output , file name

13 200 - number of quantiles to keep for localizing

14 1 0.65 - option and global "f" for vvc , see below

15 flocal.out - gridded local "f" for option 2

16
17 Options for Volume Variance Correction

18 - 0 = no volume variance correction

19 - 1 = global "f" affine correction , "f" value req.

20 - 2 = local "f" affine correction , gridded "f" file req.

Figure 7.5: Input parameters for PostMG Loc

The input parameter file for PostMG Loc pictured above shows the addi-

tional inputs and options required. A binary 0/1 option dictates whether or

not an additional output file is created in the common format with the spec-

ified number of quantiles. Global and local variance correction options are

available using the Affine Correction.

The updated software presented here allows the practitioner to generated

results from each of these three geostatistical methods in the common format.

This permits results from each of these methods, or simulation to be localized

using the flexible Localization program.

7.3 Localization

The original methodology for localization presented by Abzalov (2006) has

been adapted to a more flexible methodology for models of uncertainty in the

common format described. The software presented here permits localization of

results from MultiGaussian Kriging, Sequential Gaussian Simulation, Indica-

tor Kriging and Uniform Conditioning. Parameters for localization are given

below.
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1 Parameters for Panel Definition

2 *******************************

3
4 START OF PARAMETERS:

5 60 2.5 5.0 -SMU grid definition: nx,xmn ,xsiz

6 40 2.5 5.0 - ny ,ymn ,ysiz

7 1 0.5 1.0 - nz ,zmn ,zsiz

8 0 IKmodel.out -1=indicator for clipping model , 0=no IKmodel

9 1 -1=regular panel grid , 2=semi -regular , 3= random

10 12 12.5 25.0 - nx ,xmn ,xsiz Panel grid for options 1 & 2

11 8 12.5 25.0 - ny ,ymn ,ysiz

12 1 0.5 1.0 - nz ,zmn ,zsiz

13 20 - target number of SMUs per panel

14 paneldef.out -file for Panel Definition output

15
16 Parameters for localizing

17 *************************

18
19 kt3drank.out -file with localizing variable at SMU scale

20 1 - column for localizing variable

21 -1.0 1.0e21 -trimming limits

22 IKloc.out -Data to be localized - See note

23 200 -# of realizations or Quantiles

24 1 -1 = regular sampling , 2 = LHS

25 6921 -random # seed

26 LocalizationIK.out -file for output

Figure 7.6: Input parameters for Localization

Input parameters for Localization are separated into two sections. The

first section determines the type of panel definition. The SMU grid definition

is required regardless of panel definition style while panel grid definition is only

required for regular panels. A target number of SMUs per panel is required

for either of the more flexible panel definition options. Additionally, an option

for clipping by a binary indicator grid is offered. The input gridded file for the

binary clipping option assumes a that locations given a 0 are within the area

of interest and locations with a zero are given a null value.

The second section of the input parameters defines the localizing process.

Inputs are simple, requiring only the input file, trimming limits, the number of

realizations (or quantiles), a binary option for the type of grade class definition

and a random number seed for random sampling of grade classes.

This program operates by first sorting values by panel number. Once SMU

values have been grouped by panels the local distribution for each panel can

be constructed. This CDF is discretized into a number of grade classes, equal

to the number of SMUs. At this point either the mean of each grade class or

a random value from the grade class is drawn, depending on the configuration
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of input parameters. Localized values are assigned to the appropriate SMU

within the panel based on kriged grade from the secondary input file. Results

are exported in a standard GSLIB grid format (Deutsch and Journel, 1997).

The issues surrounding localization, discussed in Chapter 4, should be carefully

considered before implementing this process for resource evaluation.
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