.. _gettingstarted: Getting Started ======= An introduction example for new pygeostat users is provided :ref:`Introduction ` This introduction assumes familiarity with standard scientific computing packages in Python: * pandas for data management (https://pandas.pydata.org/pandas-docs/version/0.22/10min.html) * numpy for mathematics (https://numpy.org/devdocs/user/quickstart.html) * matplotlib.pyplot for plotting (https://matplotlib.org/tutorials/introductory/pyplot.html) Pygeostat users are encouraged to read the linked introductions to theses packages if unfamiliar with them, as pygeostat builds on their functionality. A series of introductory tutorials to begin learning Python (https://docs.python.org/3/tutorial/index.html) * A comprehensive list of pygeostst functions and classes is available at :ref:`genindex` * The list of pygeostst functions and classes can also be accessed as shown below, .. image:: ./figures/GettingStarted/1.png :align: left .. image:: ./figures/GettingStarted/2.png :align: left .. image:: ./figures/GettingStarted/3.png :align: left Examples: Some Exapmles of using Python standard libraries for resource modelling: Swath plot: .. plot:: import pygeostat as gs datafl = gs.ExampleData('3d_estimate').data data = datafl[['x', 'y', 'z','True', 'Estimate']] # swath plot for orient in ['x','y','z']: swath = data.groupby(orient)[['True', 'Estimate']].mean() swath.plot(title = f'{orient.upper()} Axis Swath Plot')